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This final progress report summaries the main recent results; full reports of the
results are contained in the papers appended herewith. The summary also
reviews some results from previous AFOSR grants where these are necessary
to provide the background for the current research. Four areas are
summarized:

1. Basic Mechanisms of Visual Motion and Texture Perception
2. Lateral Interations in Texture Stimuli
3. Information Processing
4. Visual Attention and Short-Term Memory.

1. Basic Mechanisms of Visual Motion and Texture Perception

This project concerned the discovery and description of basic mechanisms of human visual
motion and texture perception. Motion and texture are critical puts to visual perception. Basic
mechanisms of motion are of particular interest because they are perhaps the primary substrate for
perceptual recovery of 3D depth structures and orientation in space, they are critical for detecting
new objects and events in the environment, as well as playing an important role in 2D perception.

Motion and texture are considered together here because the problem of discriminating
velocity in a one-dimensional motion stimulus is formally equivalent to the problem of
discriminating orientation in a texture stimulus: the t dimension of the motion stimulus becomes
the y dimension of the texture stimulus.

First-Order Motion Perception

First-order motion perception. The initial studies, carried out at the inception of AFOSR
support, succeeded in describing the basic mechanism of human Fourier motion perception in full
mathematical detail. Several critical insights made this possible. The most important was
recognizing that the failure of previous theoretical attempts to apply Reichardt (1957) and similar o
systems models to human vision (e.g. Foster, 1971) was due in large measure to the fact that they

-• had dealt with data obtained with high-contrast visual stimuli. The human motion-processing
___ • system behaves in a simple way for stimuli whose contrast is less than about 0.04 to 0.05 (e.g.
S • Nakayama & Silverman, 1985, others). For higher contrasts, early nonlinearities in the visual

___ - system make the analysis the motion processing enormously more complex. Additionally, because
| ___ hundreds of thousands of detectors may contribute to human psychophysical responses, formal " 2S

____ models need to explicitly model decision processes. Finally, stimuli needed to be developed that
permitted conclusions about basic motion computations independent of the voting/decision rules
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imposed by higher-order processes.

van Santen & Sperling (1984) was perhaps the first successful application of these basic
principles first-order motion perception to humans, principles that are now quite widely accepted.
van Santen & Sperling (1985) showed the equivalence of two subsequent models (Adelson &
Bergen, Watson & Ahumada) to the van Santen-Sperling version of the Reichardt model and it
developed new results.

van Santen, J. P. H. and Sperling, G. (1984). Temporal covariance model of human motion
perception. Journal of the Optical Society of America - A, 1, 451-473.

The first of two papers by van Santen and Sperling reports that, by elaborating a Reichardt
model that had previously been proposed for insect vision, the model gives an excellent account
of human psychophysical data for low-contrast stimuli. To apply a Reichardt detector to human
vision requires in considering voting rules (e.g., absolute maximum or total power) for detectors
because many detectors present possibly conflicting information to the decision stage. There is a
full mathematical development of the elaborated theory. Many counter-intuitive predictions were
generated by the theory, and three were experimentally tested. (1) A superimposed stationary
grating, even of a grating the same spatial frequency as a moving grating, should not adversely
affect motion-direction discrimination. (2) Similarly, a stationary flickering grid should have not
affect motion discrimination of a moving stimuli with different temporal frequency. When
temporal frequencies of the moving and masking stimuli are the same, then anything may happen,
even an illusion of motion in the opposite direction. This apparent reversal of direction of the
moving grating for certain predicatable phase relations of the masking stimulus was demonstrated
experimentally. (3) For certain spatially-sampled displays, the strength of a motion percept is
directly proportional to the product of the contrast in adjacent regions. All three predictions were
verified. These data show that, contrary to "logical intuition," human motion detection does not
rely on matching spatial features in successive frames, but rather on matching of temporal
sequences in adjacent locations.

van Santen, J. P. H. and Sperling, G. (1985) Elaborated Reichardt detectors. Journal of the
Optical Society of America - A, 2, 300-321.

This paper extends the predictive power of the elaborated Reichardt model from continuous
to two-flash stimuli, and to other displays, such as random dot displays, that had previously been
thought to require "feature" models. It points out that the Reichardt model is consistent with a 3D
spatiotemporal Fourier analysis of visual displays. However, when complex displays contain
several Fourier components of approximately equal perceptual strength, a more complex analysis
such as that of the elaborated Reichardt model, is needed to generate predictions. For example,
displays in which component Fourier components move in the same direction and at the same
temporal frequency exhibit as more convincing movement than displays in which the components
move at the same velocity so to preserve 2D rigidity. It was proved that, for elaborated Reichardt
detectors, the strength of motion in two flash displays is predicted by separable temporal and
spatial components, so that these displays are ideal for studying the pure spatial properties of
motion detectors. Finally, it was proved that two alternative computational theories (Adelson &
Bergen, 1985 and Watson & Ahumada, 1985) for which no experimental data had yet been
generated, were computationally equivalent to the elaborated Reichardt model.
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Investigations of Second-Order Motion and Texture

The theoretical analysis and experimental evidence described above establishes an elaborated
Reichardt (or equivalent kind of motion computation) as the basic mechanism of motion
perception. The work of the current granting period dealt with a newly discovered second
mechanism of motion perception, which was called "Second-order" or "Non-Fourier" motion
processing to distinguish it from the previously described "First-order" or "Fourier" motion
perception. The computational principles that applied to second-order motion perception were
found also to apply to the perception of two-dimensional textures.

Chubb, Charles, and George Sperling. (1988). Drift-balanced random stimuli: A general basis for
studying non-Fourier motion perception. Journal of the Optical Society of America A: Optics and
Image Science, 5, 1986-2006.

This paper sets forth the general principles. It shows how to construct counterexamples to
first-order motion computations: visual stimuli which (i) are consistently perceived as obviously
moving in a fixed direction, yet for which (ii) Fourier domain energy analysis yields no systematic
motion components in any given direction. A general theoretical framework for investigating
nonFourier (second-order) motion-perception mechanisms; two central concepts are drift balanced
and microbalanced random stimuli. A random stimulus S is driftbalanced if its expected power
in the frequency domain is symmetric with respect to temporal frequency: that is, if the expected
power in S of every drifting sinusoidal component is equal to the expected power of the sinusoid
of the same spatial frequency, drifting at the same rate in the oppo3ite direction. Additionally, S
is micro balanced if the result WS of windowing S by any space-time separable function W is
driftbalanced. It is proved that (i) any space/time separable random (or nonrandom) stimulus is
microbalanced; (iia) any linear combination of a pairwise independent microbalanced random
stimuli is microbalanced, and any linear combination of a pairwise independent driftbalanced
random stimuli is driftbalanced if the expectation of each component is zero (a uniform field); (iii)
the convolution of independent micro/driftbalanced random stimuli is micro/driftbalanced; (iv) the
product of independent microbalanced random stimuli is microbalanced. Examples are provided
of classes of driftbalanced random stimuli which display consistent and compelling motion in one
direction although they would be completely ambiguous to any first-order motion mechanism.
The perception of nonFourier motion stimuli is explained by postulating a linear space-invariant
filter followed by a rectifyinig mechanism that computes (any increasing function of) the absolute
value of stimulus contrast followed by Fourier-energy (e.g., Reichardt) motion analysis. All the
results and examples from the domain of motion perception are transposable to and illustrated in
the space-domain problem of detecting orientation in texture patterns.

Chubb, Charles, and George Sperling. (1989). Second-order motion perception: Space-time
separable mechanisms. Proceedings: Workshop on Visual Motion. (March 20-22, 1989, Irvine,
California.) Washington, D.C: IEEE Computer Society Press. Pp. 126-138.

This paper shows how various classes of microbalanced displays can be used to derive
properties of second-order motion systems. Microbalanced stimuli are dynamic displays which do
not stimulate mechanisms that apply standard motion analysis directly to luminance (e.g.,
Adelson-Bergen motion-energy analyzers, Watson-Ahumada motion sensors, or elaborated
Reichardt detectors.) Because they bypass first-order mechanisms, microbalanced stimuli are
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uniquely useful for studying second-order motion perception (motion perception served by
mechanisms that require a grossly nonlinear stimulus transformation prior to standard analysis).
The paper demonstrates stimuli that are microbalanced under all pointwise stimulus
tran~sformations and therefore immune to early visual nonlinearities. Such stimuli are used to
disable motion information derived from spatial filtering in order to isolate the temporal properties
of space/time separable second-order motion mechanisms. They are equally useful to disable the
motion information derived from temporal filtering to isolate the spatial properties.

The paper proposes that second-order motion of all of the classes of microbalanced stimuli
under consideration can be extracted by a mechanism consisting of the following stages: (la)
band-selective spatial filtering and (lb) biphasic temporal filtering, nonzero in dc, followed by (2)
a rectifying nonlinearity and (3) standard motion analysis.

Chubb, Charles, and George Sperling. (1989). Two motion perception mechanisms revealed by
distance driven reversal of apparent motion. Proceedings of the National Academy of Sciences,
USA, 86, 2985-2989.

It is reasonable to ask whether there really are two mechanisms of motion perception or
whether one theory can encompasses both. One way to demonstrate the existence of two
mechanisms is to stimulate them to simultaneously give opposite outputs in response to the same
stimulus. This paper demonstrates two kinds of visual stimuli that exhibit motion in one direction
when viewed from near and in the opposite direction from afar. These striking reversals occur
because each kind of stimulus is constructed to simultaneously activate two different mechanisms:
a short-range mechanism that computes motion from space-time correspondences in stimulus
luminance and a long-range mechanism whose motion computations are performed, instead, on
stimulus contrast that has been full-wave rectified (e.g., the absolute value of contrast). The
stimuli were constructed so that half-wave rectification could be excluded. It is concluded that
both a Fourier and a nonFourier computation occur. In this and all previously studied cases of
2nd order motion perception, full wave rectification has been shown to be a sufficient mechanism;
for these stimuli, full wave rectification (versus half-wave rectification) is shown to be necessary.

An analogous phenomenon, distance-driven reversal of apparent slant, occurs with texture
stimuli. Apparently, in both motion and texture extraction from visual scenes, there are two
parallel mechanisms, operating simultaneously, a first-order mechanism that operates directly on
the Fourier components of the stimulus, and a second-order mechanism that operates on a
spatiotemporally filtered, full-wave rectified transformation of the stimulus.

Chubb, Charles, and George Sperling. (1991). Texture quilts: Basic tools for studying motion-
from-texture. Journal of Mathematical Psychology, 35, 411-442.

This paper continues the investigation of motion-from-spatial-texture in stimuli that are free
from contamination by motion mechanisms sensitive to anything except texture. It offers a formal
foundation for some of the results outlined in Chubb & Sperling's (1989) IEEE paper, and reports
the results of three demonstration experiments that establish empirical properties of human
second-order motion perception. Additionally, some concrete stimulus-construction methods are
provided for a special class of random stimuli called texture quilts. Although, as is demonstrated
experimentally, certain texture quilts display consistent apparent motion, it is proven that their
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motion content (a) is unavailable to standard motion analysis (such as might be accomplished by
an Adelson/Bergen motion-energy analyzer, a Watson/Ahumada motion sensor, or by any
elaborated Reichardt detector), and (b) cannot be exposed to standard motion analysis by any
purely temporal signal transformation no matter how nonlinear (e.g., temporal differentiation
followed by rectification). Applying such a purely temporal transformation to any texture quilt
produces a spatiotemporal function P whose motion is unavailable to standard motion analysis:
The expected response of every Reichardt detector to P is 0 at every instant in time.

Three quilts were studied experimentally: a quilt that relies on differences in spatial
frequency to generate perception of motion, a quilt that relies on sensitivity to differences in
orientation, and quilt that relies on the difference between an even texture and a jointly-
independent random texture. The simplest mechanism sufficient to sense the motion exhibited by
texture quilts consists of three successive stages: (i) a purely spatial linear filter (ii) a rectifier to
transform regions of large negative or positive responses into regions of high positive values, and
(iii) standard motion analysis. The first quilt demonstrates that the spatial filter is frequency
selective. The second quilt demonstrates that there exist orientation selective filters. The third
quilt demonstrates that the rectifier cannot embody a perfect squaring (power) function.

Werkhoven, Peter, George Sperling, and Chubb, Charles. (1993). The dimensionality of texture-
defined motion: A single channel theory. Vision Research, 33, 463-485.

This paper explores texture-defined motion between similarly oriented sinusoidal patches. It
exploits two ambiguous motion displays (types I and II) in each of which apparent motion can be
perceived in either of two directions. One of these directions is along a homogeneous space-time
path in which all successive sinusoidal patches are identical in spatial frequency and contrast.
Along the other, oppositely directed, path is composed of heterogeneous patches that vary in
spatial frequency and contrast. The striking and counterintuitive result is that for a wide variety of
display conditions, perceived motion along the heterogeneous path dominates the homogeneous
path. Obviously, when perceived motion along a path composed of alternating high- and low-
frequency patches dominates perceived motion along a pure high-frequency path, the strength of
texture-defined motion is not governed by a similarity metric.

All the results are explained in terms of an activity transformation. Each patch is assumed
to cause a perceptual response (activity). Strength of perceived motion along a path is determined
by the product of the activities of adjacent patches along the path. The path with the greatest
product dominates.

Whenever a particular combination of patch contrasts and spatial frequencies caused the two
motion paths to be balanced in displays of type 1, then they were found to be also balanced in
type II displays, a condition referred to as transition invariance. Under quite reasonable
assumptions about the motion mechanism, it was shown that transition invariance implies that
activity must be a one-dimensional quantity. Indeed, activity is well-described as the rectified
output of a spatial low-pass filter.

Werkhoven, Peter, Charles Chubb, and George Sperling. (1994) Perception of Apparent Motion
between Dissimilar Gratings: Spatiotemporal Properties. Vision Research. (Accepted for
publication pending revisions.)
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This paper continues the search for the determinants of the perceptual strength of texture-
defined motion (i.e., motion strength of stimuli that have no net directional energy in the Fourier
domain). Werkhoven, Sperling, & Chubb (1993) demonstrated that correspondence in spatial
frequency and contrast between neighboring patches of texture in a spatiotemporal motion path is
irrelevant to motion strength, only activiry--the rectified output of a spatial lowpass
filter-mattered. As in Werkhoven et al (1993), the motion stimuli are ambiguous motion
displays in which one motion path, consisting of patches of nonsimilar texture, competes with
another motion path, having patches only of similar texture. The textural parameters of spatial
frequency, contrast, texture orientation (slant), and temporal frequency are systematically explored.

The data show that motion between dissimilar patches of texture (which are orthogonally
oriented, have a two octave difference in spatial frequency and differ 50% in contrast) can easily
dominate motion between similar patches of texture. The relative motion strengths of two paths is
invariant with temporal frequency from 1 to 4 Hz. Analysis of the data shows that the motion
computation is largely but not entirely one-dimensional: Extreme orientation differences and very
large spatial frequency differences bring into play small but significant contributions of a second
dimension (or dimensions).

2. Lateral Interactions in Texture Stimuli: Contrast-Contrast

Chubb, Charles, George Sperling, and Joshua A. Solomon. (1989). Texture interactions determine
perceived contrast. Proceedings of the National Academy of Sciences, USA, 86, 9631-9635.

Various visual illusions that have been demonstrated for first-order stimuli, may be expected
to have corresponding second-order illusions. When the illusions are the result of important
properties of signal processing, such as boundary enhancement and gain control, the corresponding
second-order illusions should be quite informative about the corresponding second-order process..
This paper considers the second-order analog to perhaps the most famous first-order lightness
illusion, namely that the apparent lightness of. a uniformly illuminated patch depends on the
luminance of its surround. Here it is reported that the perceived contrast of a test patch P of
binary visual noise embedded in a surrounding noise field S depends substantially on the contrast
of S. When P is surounded by high-contrast noise, its bright points appear dimmer, and
simultaneously, its dark points appear less dark than when P is surrounded by a uniform field,
even though local mean luminance is kept constant across all displays. Sinusoidally modulating
the contrast PS of the noise surround S causes the apparent contrast of P to modulate in antiphase
to Cs. For P of contrast Cp, nulling procedures show that the induced induced contrast
modulation of P reaches 0.45 Cp. This very large, heretofore unnoticed, spatial interaction is
unanticipated by all current theories of lightness perception. It suggests a very general principle
of perceptual computation: gain control. Gain control may be be a nearly universal process
whereby the response of all a detector is normalized relative to the responses of their neighbors in
the same and similar classes.

Joshua A. Solomon and George Sperling. (1993). The lateral inhibition of perceived contrast is
indifferent to on-center/off-center segregation but specific to orientation. Vision Research, 33,
2671-2683.
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Chubb, Sperling, and Solomon (1990) showed that the perceived contrast of a test patch of
isotropic spatial texture P embedded in a surrounding texture field S, depends substantially on the
contrast of the texture surround S. When P is surrounded by a high contrast texture with a
similar spatial frequency content, it appears to be have less contrast than when it is surrounded by
a uniform field. This paper describes two novel textures: T' which is designed to selectively
stimulate only the on-center system, and T-, the off-center system. When the type of C and of S
is chosen to be T" or T, the reduction of C's apparent contrast does not vary with the
combination of T', T-. This demonstrates that the reduction of C's apparent contrast is mediated
by a mechanism whose neural locus is central to the interaction between on-center and off-center
visual systems.

The induced reduction of apparent contrast is :hown to be orientation specificity: the
reduction of grating C's apparent contrast by a surround grating S, of the same spatial frequency
is greatest when C and S have equal orientation. Using dynamically phase-shifting sinusoidal
gratings of 3.3, 10 and 20 cpd, the reduction of apparent contrast was measured using different
contrast-combinations of C and S.

The results: (1) Both parallel and orthogonal S gratings caused suppression of P's apparent
contrast relative to a uniform surround. (2) In all of the viewing conditions, the reduction of
apparent contrast induced by the parallel surrounds was at least as great as that induced by the
perpendicular surrounds. Often it was much greater (orientation specificity). (3) Orientation
specificity increased with greater spatial frequencies and with lower stimulus contrasts. The
results suggest a contrast perception mechanism in which both oriented and nonoriented units
determine the perceived lightness or darkness of a point in visual space, and every unit is
inhibited primarily by similar adjacent units.

3. Information Processing: Frequency Bands, Subsampling, Noise; Space and Object Perception

This cluster of projects determined, in several domains, how to most efficiently package
information to an observer. Obviously, issues of external representation of information are
inextricably tied to the qnestion of "What internal representation does the observer use?" Such
investigations may lead to useful formulations of how to improve both information presentation
and observer training. The basic method was to partition the total stimulus information into
several spatial frequency bands, and to determine performance individually for the component
bands. Additionally, Riedl and Sperling studied cross-band masking and measure how
information from component frequency bands combines in a complex, dynamic visual stimulus.

The "Three-stages and two systems" paper in this sequences proposes a theoretical analysis
of the basic computations of visual preprocessing. It shows how results from motion and texture
discrimination experiments derive from the same mechanisms that serve higher-order object object
perception. The eye movement paper in this sequence deals with the internal representation of
scenes that derive from a sequence of saccadic eye movements, and with the visual mechanisms
that serve the saccadic mode of information acquisition.
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Sperling, Wurst & Lu deal with a new method of discriminating early from late attentional
filtering of features that occur within at a single location . Their paradigm, which was applied to
repetition detection task, is easily be extended to visual search, and this forms the basis of the
proposed experiments.

Riedl, Thomas R. and George Sperling. Spatial frequency bands in complex visual stimuli:
American Sign Language Jounal of the Optical Society of America A: Optics and Image Science,
1988, 5, 606-616.

This project examined dynamic images of individual signs of American Sign Language
(ASL) with a resolution of 96 x 64 pixels which were bandpass filtered in adjacent frequency
bands. Intelligibility was determined by testing deaf subjects fluent in ASL. (a) It was possible
to find four adjacent bands which divided the signal into approximately equally intelligible parts,
any one of which yielded adequate identification accuracy (a) By iteratively varying the center
frequencies and bandwidths of the spatial bandpass filters, it was possible to divide the original
signal into four different component bands of high intelligibility (67-87% for isolated ASL signs).
(b) The empirically measured temporal frequency spectrum was approximately the same in all
bands. (c) The masking of signals in band i by noise in band j was found to be proportional to
the frequency similarity: log I(fnoise /fsiga )Aoi At constant performance,
(RMS)sig.at / (RMS)noise was the same for bands 2, 3, 4 and higher for band 1. (d) The most
effective masking noise is slightly lower in spatial frequency than stimulus (A(0=1.4). (e)
Intelligibility for the sum of two very weak signals is greater the closer they are in spatial
frequency; for strong signals, the reverse is true. The dominant factor for weak signals is
square-law additivity of signal power; for strong signals, redundancy within a band is the limiting
factor.

Parish, David H. and George Sperling. Object spatial frequencies, retinal spatial frequencies,
noise, and the efficiency of letter discrimination. Vision Research, 1991, 31, 1399-1415.

The 26 upper-case letters of English were used to determine which spatial frequencies are
most effective for letter identification, and whether this is because letters are objectively more
discriminable in these frequency bands or because observers can utilize the information more
efficiently. Six two-octave wide filters produced spatially filtered letters with 2D-mean
frequencies ranging from 0.4 to 20 cycles per letter height. Subjects attempted to spatially filtered
letters in the presence of identically filtered, added Gaussian noise. The percent of correct letter
identifications was measured as a function of s/n in each band at each of four viewing distances
ranging over 32:1. In this paradigm, object spatial frequency band and s/n determine presence of
information in the stimulus; viewing distance determines retinal spatial frequency, and affects only
ability to utilize. (a) Viewing distance had no effect upon letter discriminability: object spatial
frequency, not retinal spatial frequency, determined discriminability. (b) With the assistance of
Charles Chubb, an ideal detector was computed for the letter identification task. For these two-
octave wide bands, sln performance of humans and of the ideal detector improved with frequency
mainly because linear bandwidth increased as a function of frequency. (c) Human discrimination
efficiency (which compares human discrimination to an ideal discriminator) was 0 in the lowest
frequency bands, reached a maximum of 0.42 at 1.5 cycles per object, and dropped to about .104
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in the highest band. (d) Upper-case letter information is best extracted from spatial frequencies of
1.5 cycles per object height, an with equal high efficiency over at least a 32:1 range of retinal
frequencies from .074 to more than 2.3 cycles per degree of visual angle.

Parish, David H., George Sperling, and Michael S. Landy. Intelligent temporal subsampling of
American Sign Language using event boundaries. Journal of Experimental Psychology: Human
Perception and Performance, 1990, 16, 282-294.

This paper investigates the effects of temporal stimulus subsampling and the form of
stimulus representation on intelligibility of a complex visual stimulus (American Sign Language).
How well can a sequence of ASL frames be represented by a subset of the frames, and how is the
subset optimally chosen? Two drastically different representations of frame sequences were
investigated: dynamic (ordinary video viewing) and static (component frames placed side-by-side
in a single display). Secondarily, full gray scale images were compared with binary images
(cartoons). An activity-inlex was used to select critical frames at event boundaries-moments in
the sequence where the difference between successive frames has a local minimum. Identification
accuracy (intelligibility) was measured for 32 experienced ASL signers who viewed 84 variously
constructed sequences of isolated ASL signs. With dynamic sequences that utilized full gray-
scale, activity-index subsampling yielded significantly more-intelligible sequences than simple
repetition of every n-th frame, achieving relative compression ratios of up to 2:1. For static
sequences, activity subsampling with a small, optimal number of frames achieved higher
intelligibility than was achieved by choosing every n-th frame, for any n. Binary images were
less intelligible than the gray scale images, and the relative advantage of activity subsampling was
smaller.

(1) Event boundaries can be defined computationally. Sequences composed of frames
chosen from event boundaries yielded higher intelligibility than sequences composed of equal
numbers of frames spaced at regular intervals. (2) Static presentation of subsets of selected
frames can yield intelligible ASL "text" of isolated signs and perhaps, eventually, of
conversational ASL.

This research opens the general question of how to use printing technology in place of video
technology, where the printing technology is enhanced at the point of production by computer
graphics techniques. How can an automatically generated sequence of images best be used -- like
a comic book -- to represent a dynamic sequence of events. When an artist is required to
represent the images for eventual printing, the cost can be prohibitive. When the images can be
automatically generated from a video recording, the production costs are minor. The ASL study
demonstrates the feasibility of representing a dynamic ASL sign by a simultaneously visible
packet of images. Research is needed to determine how these results might be generalized to
more complex communications and to practical training problems that involve dynamic actions.

Sperling, George. Three stages and two systems of visual processing. Spatial Vision, 1989, 4,
183-207.
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This paper offers a theoretical synthesis of classic work on light adaptation and on visual
thresholds for patterr stimuli, work on efficiency of identification in various spatial frequency
bands, and work nn mnotion and texture perception, in terms of three stages and two systems of
visual processive. The initial question is: How would an internal noise (at various levels of
perceptual processing) appear to external observer? This is determined by the internal location of
the noise relative to three stages of visual processing: light adaptation, contrast gain control, and a
postsensory/decision stage. Dark noise occurs prior to adaptation, determines dark-adapted
absolute thresholds, and mimics stationary external noise. Sensory noise occurs after dark
adaptation, determines contrast thresholds for sine gratings and similar stimuli, and mimics
external noise that increases with mean luminance. Postsensory noise incorporates perceptual,
decision, and mnemonic processes. It occurs after contrast-gain control and mimics external noise
that increases with stimulus contrast (i.e., multiplicative noise). and therefore mimics external
multiplicative noise. Dark noise and sensory noise are frequency specific and primarily affect
weak signals. Only postsensory noise significantly, affects the discriminability of strong signals
masked by stimulus noise;: postsensory noise has constant power over a wide spatial frequency
range in which sensory noise varies enormously. Especially in dealing with modulation transfer
functions, there has been considerable confusion over the spectrum of internal sensory noise
(which unavoidably depends on spatial frequency) with the gain factor of sensory transmission
(which ideally would be independent of spatial frequency).

Two parallel perceptual regimes jointly serve human object recognition and motion
perception: a first-order linear (Fourier) regime that computes relations directly from stimulus
luminance, and a second-order nonlinear (nonFourier) rectifying regime that uses the absolute
value (or power) of stimulus contrast. When objects or movements are defined by high spatial
frequencies (i.e., texture carrier frequencies whose wavelengths are small compared to the object
size), the responses of high-frequency receptors are demodulated by rectification to facilitate
discrimination at the higher processing levels. Rectification sacrifices the statistical efficiency
(noise resistance) of the first-order regime for efficiency of connectivity and computation.

Sperling, George. Comparison of perception in the moving and stationary eye. In E. Kowler
(Ed), Eye Movements and their Role in Visual and Cognitive Processes. Amsterdam, The
Netherlands: Elsevier Biomedical Press, 1990. Pp. 307-351.

This paper reports the construction of an apparatus for producing simulated saccades--
continuous sequences of images on a stationary retina that are equivalent to the images produced
on the retina during saccadic eye movements. Spatial localization was studied for stimuli flashed
during real eye movements (using a limbus monitor) and during identical image sequences
(simulated saccades) produced on a stationary retina. The comparison between real and simulated
saccades gives critical insights into those mechanisms that are particular to saccades. The paper
reviews the historically important paradigms (and representative experiments) that purport to deal
with special modes of saccadic processing. On the basis of all these data, it proposes a theory to
account for saccadic simulation experiments and to deal with such questions about human visual
perception as:

Why don't we see the smear produced on the retina during an eye movement?
Why doesn't the world appear to move as a result of the image movements produced by eye

movements?
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Does the visual system require sudden stimulus onsets (such as those produced by eye
movements) to initiate processing episodes?

To serve the perceptual construction of a stable representation of the world, is there a special
memory to relate images produced by successive eye movements?

Sperling, G. Wurst, S. A., and Lu, Z-L. (1993). Using repetition deection to define and localize
the processes of selective attention. In D. E. Meyer and S. Kornblum (Eds.), Attention and
Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive
Neuroscience - A Silver Jubilee Cambridge, MA: MIT Press. Pp. 265-298.

Can subjects selectively attend to a subset of items in rapid display sequences, when the
subset is characterized by an obvious physical feature, but all items occur in the same location.
The paradigm is a repetition detection task in which subjects search a very rapidly presented
sequence of thirty superimposed frames for an item that is repeated within four frames.
Successful detection implies that a match occurs between an incoming item and a recent item
retained in short-term visual repetition memory (STVRM). Previous results (Kaufman, 1978,
Wurst, 1989) showed that detection of visual repetitions in a rapid stream of items is indifferent to
eye of origin and to interposed masking fields, and functions as well for nonsense shapes as for
digits. Therefore, STVRM is visual, not verbal or semantic. It is governed by interference from
new items; it does not suffer passive decay within the short interstimulus intervals under which it
has been tested.

This paper uses a novel elaboration of a repetition detection paradigm. Within the stream,
the physical features of the successive items alternate in color, size or spatial frequency. For
example, in the size condition, the odd-numbered items in the stream are large and the even-
numbered items are small. Subjects attend selectively to small (or to large) items. Using
selective attention instructions with the repetition detection task permits testing the extent to
which, at a single location, subjects can filter rapidly-successive items according to their physical
characteristics. By presenting all the items at the same location, only attentional selection
according to features (and not according to location) is effective. Subjects selectively attended to
subsets of characters based on physical differences of orientation, contrast polarity, color, size,
spatial bandpass filtering, and polarity-a'nd-size combined.

Results. Efficiency of attentional selection was determined by comparing performance in a
stream of characters that alternated a physical feature with performance in two control conditions:
One in which the to-be-unattended characters were optically filtered and another in which all
characters shared the same physical feature. Selection efficiency in bandpass filtered streams and
in the polarity-and-size streams was greater than 50 percent. Attentional selection based on the
other physical features was less effective or ineffective.

Corresponding to the benefits of attentional selection in detecting to-be-attended repetitions,
there were large costs in the detection of unattended features. Costs were more ubiquitous than
benefits.

In addition to studying repetitions of items that shared a physical feature (homogeneous
repetitions) heterogeneous repetitions were studied. Costs for detecting heterogeneous repetitions
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(relative to homogeneous repetitions) were widespread, indicating that physical features are
represented in STVRM. The corresponding stimulus benefits of detecting homogeneous
repetitions in feature-alternating streams (under equal attention) were small and only occasionally
significant.

If the state of attention were represented in STVRM, we would e.pect a cost in the detection
of heterogeneous repetitions with selective attention instructions (because the attentional state
would differ for the two elements of the pair). Such costs were observed and, in some instances
they occurred even when there was no corresponding benefit for selective attention in
homogeneous detections. This was interpreted as a lack of early attentional filtering compensated
by a memory tag representing whether or not an item was attended.

Conclusion: The largest attentional effects occur at the level of attentional selection prior to
encoding in STVRM (for bandpass and polarity-and-size stimuli) but that, even when early
attentional filtering fails, it can still occur in STVRM.

4. Visual Attention and Short-Term Memory

Performance in many visual tasks depends not only on characteristics of the visual system,
but also on more cognitive processes involved in processing visual information, such as attention
and memory. The experiments seek to dissect the processes involved in short-term attentional
control and the corresponding short-term memory systems. The experimental methods mostly
involve rapid sequences of displays because our past work has shown that temporal sequences can
be used to sample the time course of temporal processing. The work on visual persistence, iconic
memory, and related phenomena exemplifies processing in the absence of successive events; i.e.,
single-event processing.

Background

The attention experiments hereiri and many prior experiments from the vast literature on
visual attention are encompassed in a general theoretical framework. The starting point is the first
published demonstration of an attentional operating characteristic (Sperling and Melchner, 1976,
1978a) and the concept of attentional resources developed by Navon and Gopher (1979), Norman
and Bobrow (1975), and others.

Sperling, G. A unified theory of attention and signal detection. In R. Parasuraman and D. R.
Davies (Eds.), Varieties of Attention. New York, N. Y.: Academic Press, 1984. Pp. 103-181. A
state of attention is characterized by a particular allocation of processing and mnemonic resources,
and this allocation determines the joint performance on two (or more) competing tasks. The
Attention Operating Characteristic (AOC) is the range of possible joint performances as resource
allocation is varied from one extreme to the other. This paper demonstrates that the AOC is
generated by a process that is mathematically equivalent to the process that generates the receiver
operating characteristic (ROC) of signal detection theory (i.e., the process partitions observations
into either signal or noise response categories).
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This article also proposes a formal definition of a task as a triple of two sets (stimuli and
responses) and a mapping between them (a utility function). The task definition enabled a
distinction between compound and concurrent tasks. Concurrent tasks were shown to be
especially useful in the study of attention, whereas compound tasks involved primarily the study
of decision making, and resulted in considerable difficulties when they were applied to attention.
The utility function (in the task definition) is essential to understanding human performance. In
contemporary, formal theory, "utility" plays the same role as did "purpose" in earlier, informal
accounts of behavior.

Sperling, G., and B. A. Dosher. (1986). Strategy and optimization in human information
processing. In K. Boff, L. Kaufman, and J. Thomas (Eds.), Handbook of Perception and
Performance. Vol. 1. New York, NY: Wiley, 1986. Pp. 2-1 to 2-65.

This highly condensed, encyclopedic treatment of a large literature on attention and
performance is equivalent to over 200 ordinary book pages plus more than 100 figure panels.
Concepts such as formal task definitions, compound and concurrent tasks, attentional resources,
attentional operating characteristics, and more generally, strategies to optimize performance, are
applied to the interpretation of data from many classical paradigms. This yields a deeper
understanding and, in many instances, vastly different conclusions.

Attentional Trajectories.

The Wilson Cloud Chamber and Glaser Bubble Chamber, which are designed to make
visible the trajectories of individual atomic and subatomic particles, work by populating the
volume within which a particle will move with steam or superheated liquid. When a target
particle moves thru the chamber, a few of the molecules it strikes form the nucleus of condensing
droplettes or evolving bubbles, and the visible track of these droplettes or bubbles defines the
trajectory.

Sperling and Reeves (1980) introduced an analogous procedure in the realm of
measurements of human attention. A rapid stream of superimposed visual items was presented at
rates of up to 13 per second in a single spatial location. Subjects attended a second location. At
a critical moment during the sequence, subjects were cued to execute a shift of attention to the
stream location, and to report the earliest four of the items. The historgram (distribution) of the
actually reported items (a small fraction of the presented items) defined the rapid growth and
subsequent decline of attention at the stream location. This paradigm made it possible to measure
reaction times of shifts of visual attention. Indeed, the paradigm allows the measurement not only
of the mean reaction time of an attentional shift but of the entire density function of attentional
reaction times (ARTs). Mean ARTs were shown to be quite similar to motor reaction times
(MRTs) and to covary with MRTs in response to factors such as task difficulty and target
predictability.

Reeves, A., and G. Sperling. (1986) Attention gating in short-term visual memory. Psychological
Review, 93, 180-206.
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This paper offers a computational model of a shift of visual attention, greatly enlarging on
the procedures of Sperling & Reeves (1980). An attention shift takes attention from its initial
location a to a second location b. While attention is focussed at a, stimulus information from a
is admitted to further processing, and stimulus information from b is excluded. After the shift,
the roles of a and b are reversed. The process of shifting attention to b is conceptualized as the
opening of an attentional gate at b. In Reeves and Sperling's (1980) attentional task, location b
contains a rapid stream of characters, so the attention gate remains open at b only for a for a brief
period to avoid flooding memory with irrelevant items.

The theory assumes that the fraction of stimulus information passed on to higher mental
processes from a location in space and a moment in time is proportional to the attentional
allocation at that location. The theory contains only three parameters: First, there is a latency
between the signal to shift attention and the start of the attention shift. Second, the time course of
gate opening is. described by a second-order gamma function with a time constant, typically, of
several hundred msec. Third, there is the amplitude of internal noise that determines the signal-
to-noise ratio of the internally represented information.

The data set is quite complex, and the theory makes accurate predictions of literally
hundreds of data points with these few parameters.

Sperling, George. The magical number seven: Information processing then and now. In William
Hirst (Ed.), The making of cognitive science: Essays in honor of George A. Miller. Cambridge,
UK: Cambridge University Press, 1988.

This article analyzes why the magical number 7 +-2 had such a major impact on cognitive
science --it is the most cited experimental/theoretical article in Psychology. The article 7+-2
offers a theoretical account of absolute judgment (sensory categorization) experiments and of
short-term memory experiments. Both kinds of experiments have a limit of 7 (bits, and items,
respectively). There are no self-citations in the references. All of the evidence Miller used was
publically available. Miller, like Sherlock Holmes, was the one who was able to formulate a
theory to encompass these data, and it was perhaps the first plausible quantitative theory to deal
with the microprocess of cognition.

The second part of the analysis deals with the current status of Miller's proposals. Miller's
seven-item limit turns out to depend on factors such as acoustic confusability, implying that the
item limit is based on a sensory-based acoustic memory rather than an abstract memory. The
review then points out that a single memory system--a stack of seven items--can encompass both
the bit and the item limits Miller had proposed. In a sensory categorization experiment, the seven
items in working memory are items with-respect-to-which new items are judged. In a short-term
recall experiment, they are the to-be-recalled items. Such a stack memory is easily embodied in a
neural network. Thus, a simple neural network memory model can encompass the two main
tenets of Miller's magical number seven.

Weichselgartner, E., and George Sperling. (1987) Dynamics of automatic and controlled visual
attention. Science, 238, 778-780.
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Uses the Sperling & Reeves (1980) paradigm to isolate and measure the partially concurrent
time courses of automatic and controlled attentional shift. The automatic component is extremely
rapid, very brief in duration, and relatively effortless. The controlled component has the same
time course as the previously measured attention shifts (Sperling & Reeves, 1980; Reeves &
Sperling, 1986), is slower, has a longer duration, and is effortful.

Sperling, George, and Weichselgartner, Erich. (199x). Episodic theory of the dynamics of spatial
attention. Psychological Review. (Under revision.)

This paper re-analyzes previous measurements of visual attention in simple reaction-time,
choice reaction-time and complex discrimination experiments in which attention was purported to
move continuously across space. All these data plus data from attention gating experiments were
shown to be quantitatively predicted by a quantal (episodic) theory of spatial attention that
proposes instead: (a) visual attention can be resolved into a sequence of discrete attentional acts
(episodes); (b) each attentional episode is defined by its spatial facilitation function f (xy); (c) the
transition at time to between episodes is described by a temporal alerting/gating function G (t -to);
(d) f and G are space-time separable. In support of the theory, new experiments are reported
that use a concurrent motor reaction-time task to assess changes in discriminability with distance.
When non-attentional factors are corrected for, the duration of an attention shift is independent of
the spatial distance traversed and of the presence or absence of interposed visual obstacles. New
experiments that test and confirm the theory are reported.

Gegenfurtner, K. and Sperling, G. (1993). Information transfer in iconic memory experiments.
Journal of Experimental Psychology: Human Perception and Performance, 1993, 19, 845-866.

This paper investigates the role of selective and nonselective transfer processes in partial
reports of information from briefly exposed letter arrays. In order to report letters, viewers must
transfer information from a rapidly decaying persistence trace (iconic memory) to a more durable
short term memory. At some time following termination of the display, subjects are cued to
report a particular row of letters. Transfer that occurs prior to the cue is nonselective; transfer that
occurs after the cue is selective. (a) Performance is unaffected by 10:1 variations in the
probabilities of short and long cue delays. This implies that viewers use the same transfer
strategies at all cue delays. (b) Information transfer that has occurred at various times t before
and after the cue is measured by using a post-stimulus mask at time t to eliminate visual
persistence. Nonselective and selective information transfer (before and after the cue) are shown
to combine additively. (c) Positions within rows differ substantially in their accuracy of report.

A simple model accounts for partial report (cued) performance at different cue delays both
with and without a mask, and for whole report (uncued) performance. (1) The time course of
iconic legibility after stimulus termination depends on the retinal location (row). (2) Initial
attention is directed to the middle row, subsequently it switches to the cue-designated row. (3)
The instantaneous location-specific legibility times the instantaneous state of attention, integrated
over time, determines cumulative transfer, subject to the capacity limit of durable storage. A
review of earlier computational approaches shows that only this model is capable of giving a self-
consistent account of information transfer from iconic memory.
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1991 Landy, Michael S., Barbara A. Dasher, George Sperling, and Mark E. Perkins. Kinetic depth
effect and optic flow: 2. Fourier and non-Fourier motion. Vision Research, 1991, 31, 859-876.

1991 Parish, David H. and George Sperling, Object spatial frequencies, retinal spatial frequencies,
noise, and the efficiency of letter discrimination. Vision Research, 1991, 31, 1399-1415.

1991 Solomon, Joshua A, and George Sperling. Can we see 2nd-order motion and texture in the
periphery? Investigative Ophthalmology and Visual Science, ARVO Supplement, 1991, 32, No.
4. 714. (Abstract)

1991 Werkhoven, Peter, Charles Chubb, and George Sperling. Texture-defined motion is ruled by
an activity metric-not by similarity. Investigative Ophthalmology and Visual Science, ARVO
Supplement, 1991, 32, No. 4, 829. (Abstract)

1991 Sutter, Anne, George Sperling .and Charles Chubb, Further measurements of the spatial fre-
quency selectivity of second-order texture meachanisms. Investigative Ophthalmology and
Visual Science, ARVO Supplement, 199.1, 32, No. 4, 1039. (Abstract)

1991 Chubb, Charles, and George Sperling. Texture quilts: Basic tools for studying motion-from-
texture. Journal of Mathematical Psychology, 1991, 35, 411-442.

1991 Chubb, Charles, Joshua A. Solomon, and George Sperling. Contrast contrast determines per-
ceived contrast. Optical Society of America Annual Meeting Technical Digest, 1991, Vol. 17.
Washington D.C.: Optical Society of America, 1991. P. XX. (Abtact)

1991 Sperling, G. and Wurst, S. A. (1991). Selective attention to an item is stored as a feature of
the item. Bulletin of the Psychonomic Society, 1991, 29, 473. (Abstract)

1992 Shih, Shui-I and George Sperling (1992). Cluster analysis as a tool to discover covert stra-
tegies. Proceedings of the Eastern Psychological Association, 1992, 63, 41. (Abstract)

1992 Werkhoven, P., Sperling, G., and Chubb, C. (1992). The dimensionality of motion from tex-
ture. Investigative Ophthalmology and Visual Science, ARVO Supplement, 1992, 33, No. 4,
1049. (Abstact)

1992 Werkhoven, P., Sperling, G., and Chubb, C. (1992). Energy computations in motion and tex-
ture. Optical Society of America Annual Meeting Technical Digest, 1992. Vol. 18. Washing-
ton D.C.: Optical Society of America, .1992. P. XX. (Abstract)

1993 Sperling, G. Wurst, S. A., and Lu, Z-L. (1993). Using repetition detection to define and local-
ize the processes of selective attention. In D. E. Meyer and S. Komblum (Eds.), Attention and
Performance XIV: Attention and Performance XIV: Synergies in Experimental Psychology,
Artificial Intelligence, and Cognitive Neuroscience - A Silver Jubilee Cambridge, MA: MIT
Press. Pp. 265-298.

1993 Werkhoven, P., Sperling, G., and Chubb, C. (1993). The dimensionality of texture-defined
motion: A single channel theory. Vision Research, 1993, 33, 463-485.

1993 Solomon, J. A. and Sperling, G. (1993). Fullwave and halfwave rectification in motion percep-
tion. Investigative Ophthalmology and Visual Science, ARVO Supplement, 199O 34, No. 4,
976. (Abstract)

1993 Shih, Shui-I and Sperling, G. (1993). Visual search, visual attention, and feature-based
stimulus selection. Investigative Ophthalmology and Visual Science, ARVO Supplement, 1993,
34, No. 4, 1288. (Abstract)
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1993 Lu, Zhong-Un and Sperling, G. (1993). 2nd-order illusions: Mach bands,
Craik--O'Brien--Cornsweet. Investigative Ophthalmology and Visual Science, ARVO Supple-
ment, 1993, 34, No. 4, 1289. (Abstrac)

1993 Chubb, C., Darcy, J. and Sperling, G. (1993). Metameric matches in the space of textures
comprised of small squares with jointly independent intensities. Investigative Ophthalmology
and Visual Science, ARVO Supplement, 1993, 34, No. 4, 1289. (Abslnrt)

1993 Sperling, G. (1993). Spatial, Temporal, and Featural Mechanisms of Visual Attention. Spatial
Vision, 7. 86. (Absarct)

1993 Gegenfurtner, K. and Sperling, G. (1993). Information transfer in iconic memory experiments.
Journal of Experimental Psychology: Human Perception and Performance, 1993, 19, 845-866.

1993 Solomon, Joshua A., and Sperling, George. (1993). The lateral inhibition of perceived contrast
is indifferent to on-center/off-center segregation but specific to orientation. Vision Research,
33. 2671-2683.

1994 Solomon, Joshua A., and Sperling, George. (1994). Full-wave and half-wave rectification in
2nd-order motion perception. Vision Research, 33. (In press.)

Papers Under Submission for Publication.

1994 Werkhoven, Peter, Sperling, George, and Chubb, Charles. (1994). Perception of apparent
motion between dissimilar gratings: Spatiotemporal properties. Vision Research, 33.
(Accepted for publication, pending revision)

199x Sutter, Anne, Sperling, George, and Chubb, Charles. (199x). Measuring the spatial frequency
selectivity of second-order texture mechanisms. Vision Research, 33. (Accepted for publica-
tion, pending revision)

199x Sperling, George, and Weichselgartner, Erich. (199x). Episodic theory of the dynamics of spa-
tial attention. Psychological Review, 101. (Under revision.)
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George Sperling: Talks at Symposia and Meetings
of Professional Societies

t Indicates an invited address.
* Indicates an abstract of talk was published.

1991 tGeorge Sperling, Helmholtz Club, University of California, Irvine, February 5, 1991. Dynam-
ics of Visual Attention: Review and a Theory.

1991 George Sperling, 87th Meeting of the Society of Experimental Psychologists, University of Cal-
ifornia at Los Angeles, March 16, 1991. A Theory of Spatial Attention.

1991 *Solomon, Joshua A, and George Sperling. Talk presented by Joshua A. Solomon. Associa-
tion for Research in Vision and Ophthalmology, Sarasota, Florida, April 29, 1991. Can we see
2nd-order motion and texture in the periphery?

1991 *Werkhoven, Peter, Charles Chubb, and George Sperling. Poster, presented jointly Associa-
tion for Research in Vision and Ophthalmology, Sarasota, Florida, April 29, 1991. Texture-
defined motion is ruled by an activity metric--not by similarity.

1991 *Sutter, Anne, George Sperling and Charles Chubb, Poster, presented jointly Association for
Research in Vision and Ophthalmology, Sarasota, Florida, May 1, 1990. Further measurements
of the spatial frequency selectivity of second-order texture meachanisms.

1991 tGeorge Spe!ling, Neural Networks for Vision and Image Processing. An International Confer-
ence Sponsored by BOston University's Want Institute, Center for Adaptive Systems, Tyngs-
boro, MA 01879, May 11, 1991. Two Systems of Visual Processing.

1991 tGeorge Sperling, Neural and Visual Computation Symposium Center for Neural Sciences New
York University, NY, May 31, 1991. The Spatial, Temporal, and Featural Mechanisms of
Visual Attention.

1991 tGeorge Sperling, National Academy of Sciences, National Research Council, Committee on
Vision, Conference of Visual Factors in Electronic Image Communications, Woods Hole, MA,
July 23, 1991. Empirical Observations on Image Compression and Comprehension.

1991 tGeorge Sperling, The International Society for Psychophysics, Washington Duke Inn, Duke
University, Durham, North Carolina, New York University, NY October 19, 1991. The
Featural Mechanism of Visual Attention.

1991 t*Chubb, C., Solomon, J. A. and Sperling, G. Invited paper presented by Charles Chubb. Opt-
ical Society of America, San Jose, California November 7, 1991, Contrast Contrast Determines
Perceived Contrast.

1991 *George Sperling and Stephen Wurst, Paper presented by George Sperling. Psychonomic
Society, San Francisco, California November 22, 1991. Selective Attention to an Item is Stored
as a Feature of the Item.

1992 *Shui-I Shih and George Sperling. Eastern Psychological Association, Boston, Massachusetts,
April 4, 1992. Cluster Analysis as a Tool to Discover Covert Strategy.

1992 *Werkhoven, P., Sperling, G., and Chubb, C. Association for Research in Vision and Ophthal-
mology, Sarasota, Florida, May 6, 1992. The Dimensionality of Motion From Fexture.

1992 *Werkhoven, W., Sperling, G., and Chubb, C. Optical Society of America, Albuquerque, New
Mexico, September 25, 1992. Energy Computations in Motion and Texture.
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1992 *George Sperling and Hai-Jung Wu, Paper presented by George Sperling. Psychonomic
Society, Saint Louis, Missouri, November 15, 1992. Defining and Teaching Objectively Accu-
rate Confidence Judgments.

1993 *tGeorge Sperling, Linking Psychophysics, Neorophysiology, and Computational Vision: A
Conference to Celebrate Bela Julesz' 65th Birthday. Rutgers University, New Brunswick, NJ.
May 1, 1993. Spatial, Temporal, and Featural Mechanisms of Visual Attention.

1993 *Solomon, J. A. and Sperling, G. Talk presented by Joshua A. Solomon. Association for
Research in Vision and Ophthalmology, Sarasota, Florida, May 4, 1993. Fullwave and
Halfwave Rectification in Motion Perception.

1993 *Shih, Shui-I and Sperling, G. Talk presented by Shui-I Shih. Association for Research in
Vision and Ophthalmology, Sarasota, Florida, May 6, 1993. Visual Search, Visual Attention,
and Feature-Based Stimulus Selection.

1993 *Lu, Zhong-Lin and Sperling, G. (1993) Talk presented by Zhong-Lin Lu. Association for
Research in Vision and Ophthalmology, Sarasota, Florida, May 6, 1993. 2nd-Order Illusions:
Mach bands, Craik--O 'Brien-Cornsweet.

1993 *Chubb, C., Darcy, J. and Sperling, G. Talk presented by Charles Chubb. Association for
Research in Vision and Ophthalmology, Sarasota, Florida, May 6, 1993. Metameric Matches in
the Space of Textures Comprised of Small Squares with Jointly Independent Intensities.

1993 *'tSperling, George and Dosher, Barbara A. Talk presented by George Sperling. Linking
Psychophysics, Neurophysiology and Computational Vision. A Conference to Celebrate Bela
Julesz' 65th Birthday. Rutgers University, New Brunswick, New Jersey, May 1, 1993.
Structure-from-motion: Algorithms, Illusions, Mechanisms.

1993 tSperling, George. Geometric Representation of Perceptual Phenomena. A Conference in
Honor of Tarow Indow. University of California, Irvine. July 28, 1993. The Representation
of Motion and Texture.

1993 tSperling, George. Society for Mathematical Psychology, Twenty-Sixth Annual Meeting, Nor-
man, Oklahoma. Plenary lecture. August 17, 1993. Second-Order Perception.

1993 *'tSperling, George. Ciba Foundation Symposium No: 184. Higher-Order Processing in the
Visual System. The Ciba Foundation, 41 Portland Place, London, UK. October 21, 1993.
Full-Wave and Half-Wave Mechanisms in Motion and Texture Perception.

1993 "Sperling, George. International Workshop on Digital Video for Intelligent Systems. Hosted
by Department of Electrical and Computer Engineering, University of California, Irvine, Cali-
fornia. December 17, 1993. An engineering model of human visual processingllntelligibiliry of
extremely re duced images.
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George Sperling: Invited Lectures at Universities and Institutes

1991 Department of Psychology Colloquium, University of California, Irvine, Irvine, CA. January 10,
1991. Visual Preprocessing.

1991 Department of Psychology University of California at San Diego, La Jolla, CA, February 28,
1991. Mechanisms of Attention.

1991 University of California, Berkeley Berkeley, California, Joint Cognitive Science Colloquium
and Oxyopia Colloquium (Optometry School), March 22, 1991. Visual Preprocessing.

1991 University of California, Berkeley Berkeley, California, Department of Psychology/Cognitive
Science Colloquium, March 22, 1991. The Spatial, Temporal, and Featural Mechanisms of
Visual Attention.

1991 Bonny Center for the Neurobiology of Learning and Memory, University of California, Irvine,
Irvine, CA, April 8, 1991. Mechanisms of Visual Attention.

1991 Salk Institute, University of California at San Diego, La Jolla, CA, April 10, 1991. Visual
Preprocessing.

1991 Department of Psychology, University of Florida at Gainsville, April 26, 1991. Systems and
Stages of Visual Processing.

1991 Shanghai Institute of Technical Physics, Shangahi, China, June 17, 1991. How the Human
Visual System Computes Visual Motion [Host: Prof. Kuang, Ding Bo (Director, SITP); Transla-
tors: Dr. Zhang, Ming and Chen, Lulin.]

1991 Department of Computer Science, Shanghai Information-Technology Engineers Examination
Center, Fudan University, Shangahi, China, June 18, 1991. Neural Principles of Preprocessing
for Human Pattern Recognition. [Host: Prof. Wu, Lide (Director, SITEEC).

1991 Department of Electronic Science and Technology, Institute of Applied Electronics, East China
Normal University, Shangahi, China, June 20, 1991. Measuring Attention and How the Human
Visual System Computes Visual Motion [Host: Prof. Weng, Moying (Chairman and Director);
Translator: Dr. Zhang, Ming.]

1991 Department of Psychology, Beijing University, and Institute of Psychology, Chinese Academy
of Sciences, Beijing, China, June 25, 1991. [Host: Prof. Jing, Qicheng (Director, Institute of
Psychology)]

Morning: The Efficiency of Pereception [Translators: Dr. Zhang, Ken and Prof. Jing,
Qicheng.]

Afternoon: Measuring Attention. [Translator:. Luo, Chun-Rong.]

1991 Computational Vision Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beij-
ing, China, June 28, 1991. First- and Second-Order Motion Perception. [Host: Prof. Wang
Shuo-Rong (Director, Institute of Biophysics); Translator: Prof. Wang, Yun-Jiu (Laboratory
Director.]

1991 New York University, Cognitive Sciences Colloquium, September 12, 1991. Is There Atten-
tional Filtering of Items by Feature as Well as by Location?

1992 Center for Adaptive Systems Boston University, February 25, 1992. Is There Attentional Selec-
tion of Items by Feature as Well as by Location?

1992 University of Delaware, Department of Psychology Colloquium, March 4, 1992. Can Visual
Attenfional Filter Items by Feature?
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1993 University of California, Irvine, Department of Cognitive Sciences, Vision Lunch Series, Janu-
ary 13, 1993. 2nd-Order Motion Perception.

1993 University of California, Irvine, Bren Fellows Program, Learned Societies Luncheon, UCI
University Club, March 9, 1993. Modeling Mental Microprocesses.

1993 University of California, Santa Barbara, First Annual Gottsdanker Memorial Lecture (Depart-
ment of Psychology). May 27, 1993. A Theory of Spatial Attention.

1993 Kenneth Craik Club, University of Cambridge, Cambridge, England, October 25, 1993. Early
Visual Processing.

1993 University of California, Berkeley. December 3, 1993. A Theory of Spatial Attention.



George Sperling. Spatial, temporal, and featural mechanisms of visual
attention. Spatial Vision, 1993, 7, 86.

Spatial, temporal, and featural mechanisms of visual
attention

GEORGE SPERLING
Department of Cognitive Sciences. University of California. Irvine CA. USA

Spatial selective attention is determined by an instruction to attend to a location (or set of locations)
X. and temporal attention is determined by an instruction to attend during an interval T. Attentional
dynamics are studied by instructions to attend first to X! and then to X2. To measure these forms of
attention, x.yt space is populated with items, and the x.y.t coordinates of all the
attentionally-processed items are determined. Results indicate attention can be represented as a
sequence of partially-overlapping space-time separable episodes: attention shifts are discrete, not
continuous. Each attentional episode i is characterized by a particular spatial distribution of attention
f(i: x) and a temporal period g(i; t) during which f(i; x) is effective. The theory applies to many
attentional tasks: go/no-go reaction times, choice reaction times, accuracy in cued search, attentional
gating paradigms. and partial report. Attention to features (versus attention to a location in space)
is studied by presenting a rapid sequence of items containing different features at a single location and
requiring attention only to items that contain a particular feature. Featural attention occurs both early
(items with unattended features are selectively excluded from memory) and late (attention selectively
affects retrieval).



Shui-I Shih and George Sperling, Visual Search, Visual Attention, and
Feature-Based Stimulus Selection. Investigtive Opthalmology and
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VISUAL SEARCH, VISUAL ATTENTION, AND FEATURE-BASED STIMULUS
SELECTION. Shui-I Shih' and George Sperling2.
'Saint Anselm College, Manchester. NH and 2University of California, Irvine, CA.

In rapid visual search, does selective attention to the value of a particular physical
feature permit early selection of items with that feature value (e.g., red) while items with a
different value (e.g., green) ame rejected? Or, does a physical feature only direct attention to
a location, with subsequent selection being based on locational selection or on complex de-
cision processes? To disentangle the effects of feature selection and location selection, we
use a search paradigm that combines attentional cuing and RSVP (rapid serial visual
presentation). Two dimensions, size (small/large) and color (red/gren). were studied.

Selective attention to different features was jointly manipulated by instructions, presen-
tation probabilities. and payoffs. On each trial, a visual cue indicated the to-be-attended
color or size. The subject then searched a rapid sequence of character arrays (6 letters ar-
ranged in a circle around fixation) for a single unknown digit among the letter distractors.
The feature-cue indicated the probability of that feature value in the target digit (e.g., 50%.
80%, 100% red). The noncued dimension (e.g., size) was neutral; the target's spatial loca-
tion and identity were chosen randomly and independently. The task was to identify and
localize the digit and to identify its feature value in the cued dimension.

In Expt 1, all items in an array had the same feature value, and successive arrays alter-
nated in feature value (e.g. red/green). Subjects were not more successful in detecting
attended-feature targets than unattended targets. In Expt 2, successi,,e arrays also alternat-
ed features but the target and exactly one item in every other array Wad a unique feature
value. Now, subjects benefiuied'from reliable attentional cues. Thus. attentional cues to a
physical feature were useful only when they served to direct attention to a spatial location,
not otherwise.

Conclusion; In RSVP visual search, spatial location is the means by which featum-
based stimulus selection is accomplished.

SupporWt by ONR Pacepwad Sciences Program. Grant N(D014-S8-K-0569 ad by APSR Life Scienas.
Visal Infonnstion Processing Program, Grant 91-0178.



J.A. Solomon and G. Sperling. Fullwave and Halfwave Rectification In
Motion Perception. Investigtive Opthalmology and Visual Science,
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FULLWAVE AND HALFWAVE RECTIFICATION IN MOTION
PERCEPTION. J--Sloo n Q •JingA
'Syracuae Unvwaity, NY; 3University of California. Irvine.

Microbalanced stimuli are dynamic displays that do not stimulate 1st-order motion
mechanisms--€mechanisms that apply standard (Fourier energy or autocorrelanonal)
motion analysis directly to the visual signal. E To characterize the percepual
transformations of the visual signal, prior to standard motion analysis, that expose the
mojion of microbalanced stimuli. Mehd. Two kinds microbalanced somuli are tested:
(1) half wave stimuli, for which motion information is exposed by halfwave rectification
but lost following fullwave rectification and (2) fullwave stinuli, for which motion
information is exposed by fullwave recficataon but lost following haLfwave rectifica-
tion. Additionally, an ordinary squamewave luminance grating was used to stimulate 1 st-
order mechansims (the Fourier stinuwls). Remaut. Given sufficient contrast. both
fullwave and halfwave stimuli convey motion. All observers paceive fuliwave motion;
only 1/3 can perceive halfwave motion. Remarkably. fuliwave stimuli are perceived with
slightly =eater quantum efficiency than Fourier stimulL and much more efficiently than
halfwave stimuli. Tests of motion transparency reveal that when either fuliwave and
Fourier or halfwave and Fourier gratings are briefly presented simultaneously, ther is a
wide range of relative contasts over which the directions of both pratings can be
accurately perceived. Conversely, when haifwave and fuilwave gPatings are added, both
motions are perceived, but subjects cannot tell which is which. ronsians. Motion
tansparency between Fourier and microbalanced stmuli implies two parallel motion
systems. Subjects' failures to discriminate halfwave from fuUwave motion in the
transparency task suggest that the haLfwave system, for those who posses it, is not labeled
differently from the fullwave system.

Supported by AFOSR Visual Information Processing Program, Grant 91-0178.
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2nd-ORDER ILLUSIONS: MACH BANDS, CRAIK-O'BRIEN--CORNSWEET
Zhong-.Ln Lu and George Sperling. University of California. Irvine, CA 92717.
Previously. Chubb. Sperling & Solomon' demonstrated reduction of the perceived contrast
of a textured test patch when surrounded by a textured area of a similar spatial frequency
delivered to the same eye. Here. we demonstrate manifestations of lateral textural interac-
dons in analogs of luminance illusions in fuliwave random textures. (A fullwave random
texture has constant mean luminance but becomes equivalent to a luminance pattern upon
fullwave rectification.) Mach bands are demonstrated in two fullwave textures: First, a ran-
dorn texture in which the contrt of each pixel is chosen randomly and independently to be
either .c or -c; second. a texture constructed out of "Mexican hats" (center-surround) ml-
cropattema that are ramlomly center-light (+c) or center-dark (-c). The Mach band illusion
is produced by making c(x) a ramp function of x that vares from c = 0.20 to 0.80 _r'-.
An induced band of low cosmos is perceived at the bottom of the ramp, and a band of high
cornibst near the top of the ramp -1-. These subjective Impressions were quantified by
using an interleaved staircase procedure to compare the contrast of a vertical slice of the
Mach band patmtem ao an adjacetnt Zexture bar that vared in contrast from trial-to-trial. In
conotl sessions, luminance Mach bends were measured similarly The magnitude of the
perceptual Madh bands was similar for the luminance stimulus and for the two fullwave
textures. Additionally. a fullwave texture stimulus and a luminance stimulus exhibit
Cra-O'Brien-Comsweet illusions of similar magnitudes (the sdmulus ---s ? looks
lIke - j--). However. none of these Interactions could be demonstrated for halfwave
stimuli. i.e., s'imuli that become Iwnoinance stimuli after halfwave rectification but are neu-
tral to Fourier and to fullwave analyses. Together, these results indicate that the perceptual
processes governing 2nd-order spatial interactions, like those governing 2nd-order motion
perception, reflect primarily fullwave (versus halfwave) rectification. As in 2nd-order mo-
don Prcpion. 2nd-order spatial prcessing (after fullwave rectification of the stimulus) is
remarkably similar to fihst-order luminance processing.
5OwabW C. SPuint. 0 &Sohmmo1. A. (1969). Poc. NalAc.dSci. USA 86.9631-9635.
S pr, by APOSR Life Scarm. V'mud !nffmcnnio Pmressn 1 Progam. Gr•nt 91.-0173



The Dimensionality of Motion-from-Texture

Peter Werkhoven, 1 George Sperling,1 and Charles Chubb.
1Human Information Processing Laboratory, New York University, NY NY 10003, and
2Psychology Department, Rutgers University, New Brunswick, NJ 08903.

Texture-defined motion is 2nd-order apparent motion produced by consecutive
patches of texture that -re constructed to have no useful Fourier motion com-
ponents.3 A general model of the perception of texture-defined motion proposes
multiple independent nonlinear transformations of the optical input (channels), each
channel being followed by standard motion analysis. Here we present an experi-
mental paradigm and a theoretical analysis to determine the dimensionality of (i.e.,
the number of channels used in) the motion-from-texture computation and their
sensitivity to spatial frequency, orientation and contrast.

Each display contains two competing apparent motion paths. Each path consists
of alternating patches of different types of texture. The mean luminance of all tex-
tures is equal to the background luminance, and their phases are randomized so that
motion detection cannot be based on a direct correlation of the luminance patterns
(1st-order motion). We demonstrate heterogeneous motion paths in which consecu-
tive textures differ by two octaves in spatial frequency, by a factor of two in con-
trast, and have perpendicular orientations, and nevertheless these heterogeneous
paths may have the same or greater strength of apparent motion than homogeneous
motion paths that consist entirely of either type of texture alone. Such striking
counterintuitive results obtain for broad ranges of spatial and temporal frequencies.
These and similar results, together with our previous results (ARVO 1991), define a
unique single-channel computation for the detection of texture-defined motion.
That is, all these sinusoidal texture-defined motion stimuli are preprocessed by a
single nonlinear transformation (a broadly tuned texture grabber with a preference
for low spatial frequencies) followed by standard motion analysis.
3Chubb, C. & Sperling, G. (1991). Texture quilts: Basic tools for studying motion-from-texture. J.
Math. Psychol. 35. *Supported by AFOSR Visual Information Processing Program, Grant 91-0178.
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CLUSTER ANALYSIS AS A TOOL TO DISCOVER COVERT
STRATEGIES.
Shui-I Shih and George Sperling. New York University.
Cluster analysis is proposed as a tool to discover whether and
how performance in a series of sessions (or trials) depends on
the effect of covert strategies. We illustrate its value by apply-
ing it to a large short-term memory experiment to analyze the
change in individual performances with practice. Data were
collected from 34+ sessions for two subjects. The results for
each session were characterized by 54 dependent variables.
ANOVA showed a main effect for dependent variables but no
main effect for sessions. A Tukey test yielded highly significant
interaction of sessions x dependent variables for both subjects,
indicating that there were complex, essentially unanalyzable,
changes in performance over sessions. On the other hand, clus-
ter analysis discovered a partition of the sessions into two clus-
ters with distinctively different performances for one of the sub-
jects. The nearly chronological correlation between the clusters
and sessions means that practice produced the change in stra-
tegy; strategy being defined by the performances in the clusters.
In conclusion, we fecommend using both a statistical model
(ANOVA) and an analytical tool (cluster analysis) to discover
and characterize the effects of practice and covert strategies.



George Sperling. Selective Attention to an Item Is Stored as a Feature
of the Item. Bulletin of the Psychonomic Society, 1991, 29, 473.

8:00-8:20 (1)
Selective Attention to an Item Is Stored as a Feature of the Item.

GEORGE SPERLING, New York University, & STEPHEN A. WURST.
SUNY at Oswego-Subjects must detect a repetition in a stream of 30
characters flashed at 10 per second. Items alternate in either color
(blak/white), size, orientation, or spatial frequency. Selectively attersding
a feature (e.g., black) never improves detection of repeated attended
(black) versus unattended (white) items. Many counterintuitive results
are explained by assuming (1) all items are stored in short-term mem-
ory (there is no perceptual filtering) and (2) attention to an item is itself
stored as a feature of that item.
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FURTHER MEASUREMENTS OF THE SPATIAL FREQUENCY
SELECTIVITY OF SECOND-ORDER TEXTURE MECHANISMS

Anne Sumer. Georse Sperling. & Charles Chubb
Human Information Processing Labmoraoy New York Univearity, NY, NY 10003

A number of investigations of texture and motion perception suggest a
two-stage prucessing system consisting of an initial stage of elective linear
filtering. followed by a rectification and a econ stage of selective linear
filtering. Herm we present new data measuring two properties of the second-stage
filters: their contrast modulation sensitivity as a function of spatial frequency
(MTF). and the relation of initial spatial filtering to second-stage selectivity. To
determine the MTF, we used a stacs procedure to obtain amplitude
modulation thresholds for the detection of the orientation of Gabor modulations
of a bandlimitced noise carrier. Wc used improved noise carriers with a narrower
bandwidth than the stimuli reported last year. Four carrier bands were created
with center ftreuencies of 2.4. 8. and 16 c/deg. The spatial frequency of the test
signals (Gabor amplitude modulations) ranged from 0.5 to 8 cldeg.

The improvements in our stimuli produced a different pattern of results: (I)
The threshold amplitude of signal modulation was lows for 0.5 and 1.0 cddeg.
Above 1.0 c/deg. threshold increased with frequency1 . (2) Ther was a
significant interaction of carrier frequency band with the modulating frequency.
with the lowest thresholds occuring for carrier frequcncy/modulation frequency
ratios of about three to four octaves. These results indicate that the second-stage
selective filters and detectors are most sensitive to frequencies lower than or equal
to I c/deg. and that they are selective with regard to the spatial frequency content
yf the carrier noise on which the signals are impressed.
Jalnw. JiLT. & Kcwut*, in. J., (1915). Vi. R. 25 (4) pp. 511-521.

Suppmted by AFOSR Wife Somncu Dulrme CmG Ua0140 and NIUt Guat 5T32MH14267.
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TEXTURE-DEFINED MOTION IS RULED BY AN ACTIVITY METRIC -
NOT BY SIMILARITY

Peter Werkhoven. Charles Chubb and George Sperline.

Human Information Processing Laboratory, Nev, York University

We examined motion carried by textural properties. The stimuli we
used consisted of patches of sinusoidal grating of various spatial
frequencies and contrasts. Phases were randomized to insure that motion
mechanisms sensitive to correspondences in stimulus luminance were not
systematically engaged.

We used an ambiguous apparent motion paradigm in which a
"hbeterogeneous motion path (defined by alternating patches of a type A
and a type B texture) competes with a "homogeneous" motion path defined
by patches of typ A. We found that the strength of these (2nd order)
motion stimuli is determined by the covariance of the activity of the
textures that define the motion paths. The activity of a texture is an
hypothesized property that is proportional to the texture's contrast and is
found to be inversely proportional to its spadal frequency (within the range
of spatial frequencies examined). Indeed, heterogeneous motion between
equal contrast patches of a high spatial-frequency texture A and a low-
spatial frequency texture B can easily dominate homogeneous motion
between two patches of A because the activity of texture B is higher than
that of texture A.

At temporal frequencies higher than 4 Hz, we find that activity
covariance almost exclusivel.y determines motion strength At lower
temporal frequencies, similarity between textures becomes a significant
factor a Well.
Sqncp o y.%F Life Sckam, ViWW Informa o PMriol Ptpam. iran 88-0140.
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CAN WE SEE 2nd-ORDER MOTION AND TEXTURE IN THE PERIPHERY?
Joshua A. Solomon and George Sperling.

Human Information Processing Laoratory. New York University
Stimuli. Our 1st-order stimuli are moving sine gratings. Our 2nd-order stimuli

are patches of static visual noise, whose contasts are modulated by moving sine
gratings. Neither the spatial orientation nor the direction of motion of these 2nd-
order (drift-balanced) stimuli can be detected by analysis of their Fourier domain
power spectra. They are invisible to Reichardi and motion-energy detectors.

Method. For these dynamic stimuli, in the fovea, and at 12 deg eccentcity, we
measured contrast modulation thresholds as a function of spatial frequency for
discrimination of -45 deg jextu sant and for discrimination of direction of
motion. Spatial frequency was varied by changing viewing distance.

Results. For sufficiently low spatial frequencies and sufficiently large contrast
modulations, all stimuli are visible both fovesUy and peripherally. For peripherally
viewed 1st-order gratings, the highest spatial frequency at which motion or texture
discrimination is possible is about 1/4 that at which the corresponding
discrimination is possible for foveally viewed gratings. For peripherally viewed
2nd-order gratings, the highest spatial frequencies at which motion or texture
discrimination are possible are somewhat less than 1/4 the frequencies of the
corresponding foveal discriminadons TIhus, as the stimulus moves peripherally.
the visual mechanisms that detect 2nd-order motion and texture lose sensitivity
somewhat faster than the 1st-order mechanisms.

Concusions. Under certain spjecific assumptions, our results suggest the
following about the neural detectors involved in these discriminations: (1) For both
motion and texture, them are more foveal than peripheral detectors at au spatial
frequencies. (2) Thee a more 1st-order than 2nd-order detectors. (3) On the
average. foveal detectors respond to higher spatial frequencies than peripheral
detectors. (4) The 2nd-order foveal-peripheral spatial frequency dicrence is
somewhat larger than the I st-order difference.

Suppqnd by AFOSR Life SciewAc. Viaud Infonmmuim Procan$ Plopa, GimA U1-0140.
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The Lateral Inhibition of Perceived Contrast
is Indifferent to On-Center/Off-Center
Segregation, but Specific to Orientation
JOSHUA A. SOLOMON,* GEORGE SPERLING,t CHARLES CHUBBt

Received 27 January 1993; in revised form 21 May 1993

When a central test patch C, composed of an isotropic spatial texture, is surrounded by a texture
field S, the perceived contrast of C depends substantially on the contrast of the surround S. When
C is surrounded by a high contrast texture with a similar spatial frequency content, it appears to
have less contrast than when it is surrounded by a uniform field. Here, we employ two novel textures:
T+ which is designed to selectively stimulate only the on-center system, and T-, the off-center system.
When C and S are of type T+ and T-, the reduction of C's apparent contrast does not vary with
the combination of T+, T-. This demonstrates that the reduction of C's apparent contrast is mediated
by a mechanism whose neural locus is central to the interaction between on-center and off-center visual
systems. We further demonstrate orientation specificity: the reduction of grating C's apparent contrast
by a su. iound grating S, of the same spatial frequency is greatest when C and S have equal orientatio.
Using dynamically phase-shifting sinusoidal gratings of 3.3, 10 and 20 c/deg, we measured reductiom
of apparent contrast using different contrast-combinations of C and S. Results: (1) S gratings, both
parallel and perpendicular to C, cause a reduction in C's apparent contrast relative to a uniform
surrountd. (2) In all of the viewing conditions, the reduction of apparent contrast induced by the parallel
surrounds was at least as great as that induced by the perpendicular surrounds. Often it was much
greater. (3) Orientation specificity increases with increasing spatial frequency and with decreasing
stimulus contrast.

Lateral inhibition Orientation specificity Contrast perception Texture Scale invariance

INTRODUCTION to local contrast energy within relatively narrow spatial

Previously, we demonstrated that the p d contrt frequency bands. Neural arrays of this type have also

of a patch of isotropic, random visual texture is dimin- been suggested by other psychophysical and physiologi-

ished whenathat patch isrmbeddra do vinual tture nding cal studies (Chubb & Sperling, 1988, 1989; Shapley &
ished when that patch is embedded in a surrounding Victor, 1978; Enroth-Cugell & Jakiela, 1980; Ohzawa,
background of similar texture (Chubb, Sjperling & Sclar& Freeman, 1985; Sagi & Hochstein, 1985; Heeger,

Solomon, 1989). We also demonstrated that, for brief &992).

flashes of the center and surround, this contrast inhi- 1992).

bition effect is strictly monocular. That is, when the The present research describes two new phenomena ofS patch and the surrounding texture are presented to lateral texture-contrast interactions. The first section

different eyes, the apparent contrast of the center will not (Expt 1) demonstrates that signals from on-center and

be diminished. In addition, we showed that this effect off-center visual mechanisms are combined prior to
processing by the mechanism which mediates the lateral

is spatial-frequency specific: when the spatial frequency inhibition of perceived contrast. The second section
of the patch differs by an octave from the frequency of
the surround, then the apparent contrast of the patch is compose this laterally interactive mechanism are tuned
influenced very little by the contrast of the surround. tomseif o ratinsosatiae me ares

These results suggest the existence, at some level of visual the orientation specificity as a function of the contrasts

processing, of laterally-interactive neural arrays tuned of the center and surround.

*Syracuse University. Institute for Sensory Research, Merrill Lane,
Syracuse, NY 13244-5290, U.S.A. GENERAL METHODS

tTo whom all correspondence should be addressed at: Department of
Cognitive Science. University of California, Irvine. CA 92717. Subjects
U.S.A.

*Psychology Department. Rutgers University, Busch Campus. New In each experiment two subjects were run. Each
Brunswick. NJ 08903. U.S.A. subject was a trained psychophysical observer (JS and
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CC are experimenters). Each had normal or well- CONTRAST FIXED
corrected vision. C.

Stimuli C
Each stimulus consisted of a circular patch of texture

(the center) surrounded by another circular patch of
texture (the surround). The mean luminance of each
center and surround was the same, and equal to the
background of the display. All displays were presented
at 60 frames/sec, and all stimuli were dynamic. That is,
new random phases of the textures in the center and
in the surround were selected every j sec. The images
were created using both specially designed programs and
the HIPS image-processing software package (Landy,
Cohen & Sperling, 1984). ,.

Apparati CONTRAST VARIABLE

The displays for the experiments were presented on FIGURE I. Illustration of general procedure. Subject fixates on a cue

three different monochrome graphics monitors using an spot. Following a key press, eight frameblocks (four frames at 60

Adage RDS 3000 image display system. In Expt I, frames/see) appear in one of one of the four center!surround texture
combinations. They are followed by eight frameblocks of just the

subject CC used a Leading Technologies 1 230V (12 in center texture (surround contrast equals zero). This 16 frameblock
diagonal) with a mean luminance of 90 cd/m 2, and sequence is then repeated. Presentation rate is 15 frameblocks sec.

subject JS used a US Pixel PX- 15 (15 in diagonal) with Immediately following the sequence a blank frame is presented, which
a mean luminance of 40 cd/mi. In Expts 2 and 3, both is terminated by the subject*s response. The subject's task is to indicate
subjects used a Princeton MAX-15 (14 in diagonal). wwhether or not the center texture appeared to have more contrast in
subjects umedan Pinaceton roAg-ly (14 c In digonal). the presence of the surround than when viewed in isolation.
with a mean luminance of roughly 60 cd/in2 . In Expt 4.

both subjects used the US Pixel.
center/surround pair again and finally just the center

Calibration again. Each of the four presentations lasted 533 msec.
For each monitor, luminance linearization was The subject's task was to make a forced-choice judg-

achieved using a center/surround display comprised of ment. The subject had to decide whether the central
a uniform circular patch surrounded by an annular grating had more contrast in the presence of the sur-
background containing a squarewave pattern of spatial round or when it appeared alone. The subject indicated
frequency equal to that of the sinusoidal pattern used his/her choice by pressing one of two buttons. There was
in Expts 2-4. A sheet of frosted plastic was placed in no limit to the time within which the subject had to give
front of the monitor. At distances of I m or more, this his/her answer. In summary: the center appeared four
effectively filtered out the high spatial frequencies in times in a trial, twice with the surround on ("masked
the annular surround, and both center and surround center"), and twice with the surround off ("test center").
appeared uniform. The experimenter set the maximum. The subject's task was to decide whether the apparent
and minimum luminance values for the light "and dark contrast of the test center was greater or less than the
pixels of the surround, and then adjusted the luminance apparent contrast of the masked center.
of the center until center and surround were no longer We use "c, ; c." to denote a response indicating that
distinguishable. The resulting center luminance is thus the apparent contrast of the test center was greater than
halfway between the maximum and minimum lumi- apparent contrast of the masked center and "c, . c," to
nances of the display. Systematic iterations of this denote the response that the apparent contrast of the test
technique yield displays with precisely calibrated con- center was less than apparent contrast of the masked
trasts. In order to stabilize the monitor's power draw center. Consider the psychometric function mapping c,
throughout the linearization process, two separate the actual contrast of the test center, to P("c, ). c.").
center/surround displays were shown concurrently. We determined two points on this function, the values
When establishing a relatively high luminance value on of c, for which P("c, . c.") = 0.62 and 0.38. This allows
one display, the corresponding low luminance value was us to estimate both the point of subjective [the value
established on the other. of c, for which P("c,1 ; c.") = 0.5] and the slope of the
Procedure .psychometric function, which is a measure of the

intrinsic variability of the point of subject of subjective
The subject sat in a dark room and viewed the display equality. To determine these points, we used a staircase

binocularly. The only source of illumination was the procedure in which the subject's response on trial n is
light from the continuously illuminated display. The trial used to determine the contrast of the test center on trial
sequence is illustrated in Fig. i. Upon a key press, a n + I.
stimulus with a center and a surround was presented. For each stimulus, there were two interleaved stair-
Then, the central texture was presented alone, then the cases, designated by their expected points of convergence
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on the psychometric function: a 0.62 staircase and a discernible to subsequent processing stages after some
0.38 staircase. In the 0.62 staircase, the contrast of the considerable time (Enroth-Cugell & Robson. 1984).
test center was decreased by one step size, after every However, stimuli of contrast which cause a decrease in
• c, c c," response. The contrast of the test center was the firing rate of on-center cells should simultaneously
increased by one step size, after two consecutive trials cause an increase in the firing rate of off-center cells, and
yielding "c, < c," responses. In the 0.38 staircase, the vice versa. Thus, contrast information can be adequately
contrast of the test center was decreased by one step coded by an increase in the firing rate of one of the two
size, after every "c, < c." response. The contrast of the systems.
test center was increased by one step size, after two Indeed, selective, pharmacological blocking of on-
consecutive trials yielding "c, > c," responses. center cells in monkeys has been demonstrated (Schiller,

Specifically, we measured the reduction of the masked Sandell & Maunsell, 1986) to severely impair detection
center's apparent contrast induced by the presence of of bright spots, without affecting dark spot detection.
the surround, as a percentage. The calculation of this This finding supports the notion that local luminance
is shown here increments are coded by the on-center system, and local

luminance decrements are coded by the off-center system.
percent reduction in apparent contrast Two recent psychophysical studies with human sub-

1 c.- c]1 jects supply further evidence for segregated processing
= 100 (1) of local luminance increments and decrements. Malik

and Perona (1990) demonstrated that when one texture
where c. is the actual contrast of the masked center, and is defined by patches composed of light bars with dark
c, is the actual contrast of the test center. sidebands, and another by dark bars with bright side-

For each viewing condition in each experiment, sub- bands, a boundary between the two textures is perceived
jects ran one block of 50 trials (at least six trials per preattentively. Solomon and Sperling (1993) demon-
staircase) using a step size of value jIC,. Then, with a strated that one-third of the population can perceive the
smaller step size (approximately kc,), subjects ran as motion of gratings defined by the same textures used
many blocks of 100 trials as necessary (typically 3-5) in the current experiment. A mechanism having a linear
until the variance of the reversed points of each staircase, function of stimulus luminance as input would not be
divided by the square root of the number of reversals, able to segregate Malik and Perona's textures nor extract
was no greater than 2.5%. motion from Solomon and Sperling's gratings. Neither

would one whose input equally weights local luminance

EXPERIMENT 1: increments and decrements. However, performance of

ON-CENTER/OFF-CENTER INTERACTION these tasks can be modeled by a mechanism whose input
effectively filters out either local luminance increments or

The fact that Chubb et al. (1989) observed the local luminance decrements, and has a soft activation
induced reduction of apparent contrast to be strictly threshold.
monocular in their conditions suggests it is a Based on the luminance-balanced micro-elements of
relatively low level visual process. This raises the possi- Carlson, Anderson and Moeller (1980), two novel tex-
bility that the lateral inhibition underlying the effect tures were designed to investigate mechanisms which
might be occurring at the level of on-center and off- receive input from either on- or off-center neurons, but
center retinal ganglion cells or LGN cells;- If so, it not both. These textures consist of bright or dark points
seems possible that the inhibition would selectively occur on gray backgrounds. In theory, bright points will
between cells of the same contrast polarity. In other selectively increase the firing rates of on-center cells in
words, perhaps on-center cells selectively inhibit other whose receptive field centers they fall, and dark points
on-center cells and off-center cells selectively inhibit will increase the firing rates of off-center cells in whose
other off-center cells. Experiment I investigates this receptive field centers they fall. These textures are some-
conjecture. what similar to the stimuli used by Zemon, Gordon and

Welch (1988), in an attempt to differentially stimulate
Stimuli the on- and off-center systems. Ours differ from the

The on-center and off-center visual pathways work textures used by Zemon et al., in that ours are designed
in tandem to efficiently code information about contrast so that the level of adaptation of neurons in each
in the visual field. Both on-center and off-center ganglion pathway remains constant, independent of the polarity
and LGN cells maintain a steady base rate of firing, of the texture. This is accomplished by ensuring that the
which can be increased or decreased by appropriate mean luminance of all textures remains constant and
stimuli. It seems unlikely that contrast information from that phase (i.e. the positions of the bright and dark
suprathreshold stimuli can be adequately signaled by points) is randomly determined every J sec. Unlike the
decreases in the base firing rates. In the extreme, no static textures used by Zemon et al. which were not
cell can distinguish between two stimuli, each of which equated for mean luminance, our textures are designed
has sufficient contrast to cause a complete cessation in so that any neuron with a receptive field large enough to
firing. Less extreme stimuli may slow the firing rate include several bright or dark points will receive the
down enough so that the rate itself may only become same stimulation.
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ON OFF

FIGURE 2. Illustration of "ON" and "OFF" textures. A vertical (or horizontal) slice through each texture is diagrammed.
Mean luminance - is indicated on the ordinates.

Insofar as the on-center and off-center ganglion cells on-center cells in whose receptive field centers they fall,
can be modeled as having center-surround antagonism and the dark spots will increase the firing rates of
and a (soft) threshold for firing, then the bright spots in off-center cells. Various plausible assumptions about the
our textures will selectively increase the firing rates of responsiveness of on- and off-center systems make a high

(a)(b

T

FIGURE 3. Stimuli for Expt 1. (a) On-center stimulating center. on-center stimulating surround (ON/ON). (b) On-center
stimulating center, off-center stimulating surround (ON/OFF). (c) off-center stimulating center. on-center stimulating surround

(OFF/QN).(_) Off-center.mulating center, off-center stimulating surround (OFF/OFF).
*See the attached sheet or eter iigure.
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degree of physiological selectivity likely. For example, According to these results, the neural mechanism that
if responses are proportional to the second power of mediates the lateral interactions responsible for this
contrast of near-threshold stimuli, then stimulation of reduction of apparent contrast combines information
the on-center system by bright points should dwarf any from both the on-center and the off-center pathways.
concomitant stimulation of the off-center system by The mechanism for the lateral inhibition of perceived
their background. Nonetheless, the true physiological contrast lies central to the point of on-center/off-center
selectivity of these textures remains to be tested. integration.

The texture designed to selectively stimulate on-center
cells is comprised of a regular grid of bright pixels EXPERIMENTS 2-4:
(the pixel at every third row and every third column is EXPARIMNTSPC- IT
bright). This texture is called an "ON" texture. The
"OFF" texture is designed to selectively stimulate off- The procedure we use here was motivated by
center cells; it is comprised of a regular grid of dark the initial observation that a surround grating whose
pixels (the pixel at every third row and every third overall contrast is temporally modulated will cause an
column is dark). The luminances of the other pixels in apparent, opposite phase modulation in the contrast of
the textures are chosen so that the mean luminance of a temporally constant target grating. When two target
the ON texture is equal to the mean luminance of the gratings are used, one with orientation parallel to that of
OFF texture (see Fig. 2). the surround and one with orientation perpendicular to

The stimuli used in this experiment were composed that of the surround, the contrast of the parallel target
of center/surround combinations of these textures. seems to modulate more than the contrast of the perpen-
The positions of the pixel grids in each center and each dicular target. Further observations suggested that the
surround of each block of four frames (-L sec) were disparity between contrast inhibition induced by
randomly chosen from one of nine possible phases parallel and perpendicular surround gratings was
(three horizontal positions times three vertical pos- not always pronounced. Some stimulus parameters
itions). this produces a dynamically changing display are better than others at eliciting orientation specific
and the appearance of a jittering boundary between differences in contrast inhibition. The following
center and surround.

There were four stimulus combinations corresponding

to two different types of surround texture times two
differeat types of center texture. The four center/ V
surround combinations are shown in Fig. 3. ON masked 8 a- 0.62
centers (with a surround) are judged only relative to ON 0
test centers (without a surround), and OFF test centers _
are judged only relative to OFF masked centers. 8

The stimuli were viewed from a distance of 0.67 m. 03At this distance, for JS the surround subtended a visual 0
angle of 9.3 deg, and the center, 1.5 deg. For CC the 5
surround subtended a visual angle of 7.2 deg, and the iS
center, 1.2 deg. "ONION OFF/ON ON/OFF OFF/OFF

Results and discussion

The results for both subjects are plotted in Fig. 4.
Two points, the means of the staircases with the different V
convergence points, are shown for each center/surround 8
combination. The lower point indicates the percent
reduction in apparent contrast, as determined by the
0.38 staircase; the upper point indicates the 0.62 stair-
case. Symbol size reflects maximum standard error.
Most standard errors are much less than symbol size.

For each center/surround combination, both subjects CC
show more than a 50% reduction of the center's appar-.

ent contrast induced by the surround. The mean percent
reduction (mean of 0.62 and 0.38 staircases) of apparent ONION OFF/ON ON/OFF OFF/OFF

contrast does not vary with center/surround combi- Stltiu c Auwmtlon
nation. A surround which is intended to excite only FIGURE 4. Results for subjects JS and CC, Expt I. For each stimulus

the off-center visual system causes the same degree of configuration, there is a 0.62 probability that the apparent reduction

reduction in the apparent contrast of a center which is in contrast induced by the presence of the surround is less than that

oexcite only the on-center visual system, as denoted by the upper point. Likewise, there is a 0.38 probability that
intended to ethe apparent reduction in contrast induced b) the presence of the
does a surround which is intended to excite only the surround is less than that denoted by the lower point. Symbol size

on-center system, and vice versa. reflects maximum standard error.
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experiments were designed to confirm our initial dition with the new monitor. The resulting data were
observations, indistinguishable from the initial data gathered in
Stimuli Expt 2.

Only with the c, = 1.0, c. = 0.5 procedure was the
All the stimuli were center/surround combinations center grating visible at 4 m. (At this, the longLst viewing

of sinewave gratings. For each - sec frameblock of the distance, the center grating had a spatial frequency of
stimulus, the phases of both the center and the surround 20.0c/deg.) Thus, this viewing distance was omitted
gratings were independent and randomly determined at from all other procedures. Similarly, with the c, = 0.04,
one of four possible phases. The sinewave gratings were c, = 0.03 procedure, the center grating was invisible
presented in one of two different orientations: either from 2 m. Thus, only the shortest viewing distance was
slanted 45 deg in one direction or slanted 45 deg in the used in Expt 4.
other direction. There were four center/surround combi-
nations, corresponding to the two different orientations Results
of surround grating times the two different orientations There were no systematic differences between the
of center grating. The four stimulus combinations are responses to stimuli of reflectively symmetrical orien-
illustrated in Fig. 5. tations; therefore, these data have been pooled. That is,

the data from trials in which the center and surround
Procedures shared the same orientation have been pooled (parallel

There were four independent variables: center/ configuration), and the data from trials in which the
surround orientation (parallel, perpendicular), spatial center and surround were perpendicularly oriented have
frequency (3.3, 10, 20 c/deg), contrast of the surround c,, been pooled (perpendicular configuration).
and contrast of the masked center c.. Spatial frequency The results for Expts 2-4 are plotted in Figs 5 and 6.
was varied by varying viewing distance; this had the As in Expt 1, two points are plotted for each configur-
virtue of leaving all the physical characteristics of ation to indicate the points of convergence of the 0.62
the display intact and varying only the retinal scale. staircases and the 0.38 staircases.
The dependent variable was the percent reduction in Each individual graph compares the reduction in
apparent contrast of the center induced by the presence apparent contrast for the parallel stimulus configuration
of the surround, as defined in equation (1). Viewing with that for the perpendicular stimulus configuration.
conditions and results for Expts 2-4 are summarized in Trends in the data. (1) For every stimulus configur-
Table I. ation, in every viewing condition, there is-a statistically

The monitor used to display the stimuli in Expt 4 was significant (P < 0.005) percent reduction of the center's
different from the one used to display the stimuli in apparent contrast induced by the surround.
Expts 2 and 3. As a consistency check, both subjects (2) The difference between the heights of the
performed the 3.3 c/deg, c, = 1.0, c. = 0.5 viewing con- parallel-configuration points and the perpendicular-

TABLE 1. Viewing conditions and results for Expts 2-4

Contrast"reductioo (%)

Contrast dva Spatial Mean Parallel Perpendicular
frequency luminance

Experiment Subject ca Ce Surround Center (c/deg) (cd/mr) 0.707 0.293 0.707 0.293
2 AS 1.0 0.5 9.9 1.64 3.3 60 47.2 41.9 44.6 40.6
2 AS 1.0 0.5 3.3 0.55 10.0 60 51.5 45.4 42.9 34.0
2 AS 1.0 0.5 1.6 0.28 20.0 60 52.9 37.1 21.7 6.0
2 AS 0.2 0.1 9.9 1.64 3.3 60 38.1 28.5 30.0 22.2
2 AS 0.2 0.1 3.3 0.55 10.0 60 52.6 36.7 17.4 4.4
2 iS 1.0 0.5 9.9 1.64 3.3 60 29.3 19.7 27.5 19.0
2 iS 1.0 0.5 3.3 0.55 10.0 60 37.7 27.4 28.5 18.1
2 iS 1.0 0.5 1.6 0.28 20.0 60 54.2 28.7 22.9 4.6
2 iS 0.2 0.1 9.9 1.64 3.3 60 26.3 19.3 23.0 8.1
2 iS 0.2 0.1 3.3 0.55 10.0 60 41.4 29.3 19.6 7.7
3 AS 1.0 0.1 9.9 1.64 3.3 60 49.6 41.4 40.0 31.5
3 AS 1.0 0.1 3.3 0.55 10.0 60 58.1 47.8 37.0 24.4
3 AS 0.2 0.1 9.9 1.64 3.3 60 35.6 27.4 29.6 24.4
3 AS 0.2 0.1 3.3 0.55 10.0 60 52.6 43.7 26.3 17.0
3 is 1.0 0.1 9.9 1.64 3.3 60 44.4 34.8 42.6 -29.3
3 iS 1.0 0.1 3.3 0.55 10.0 60 41.1 30.4 28.5 4.4
3 iS 0.2 0.1 9.9 1.64 3.3 60 26.6 19.3 23.0 8.1
3 iS 0.2 0.1 3.3 0.55 10.0 60 41.1 29.3 19.6 7.7
4 AS 1.0 0.04 9.9 1.64 3.3 40 64.6 60.9 62.0 56.9
4 AS 0.04 0.03 9.9 1.64 3.3 40 37.8 31.3 27.8 12.8
4 iS 1.0 0.04 9.9 1.64 3.3 40 48.5 43.0 42.5 28.5
4 iS 0.04 0.03 9.9 1.64 3.3 40 40.5 24.4 23.6 6.6
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configuration points on each graph is a measure of the higher the absolute value of the output of a filter in such
orientation specificity in that viewing condition. In all an array, the greater its inhibitory effect on other filters
of the viewing conditions, the percent reduction of near it in the array. Thus, high contrast regions of a
apparent contrast induced by the parallel surrounds is at narrow band texture produce regions of high absolute
least as great as that induced by the perpendicular value in the filter array tuned to that texture; in turn,
surrounds. Often it is much greater. these regions of high absolute value output act laterally

(3) The left column of Fig. 5 represents all of the data to damp the magnitude of the output values produced by
from the trials in which c, = 1.0, cm = 0.5. Note that an filters in nearby regions of the array, thereby lowering
increase in the viewing distance (and hence an increase the apparent contrast of the inhibited region.
in the retinal spatial frequency of the gratings) results in In the visual system, filters are realized by neurons.
greater orientation specificity. This general trend obtains We assumed that, in each of our experimental con-
for the other combinations of c, and cm (middle column ditions, the observed percent reduction of apparent
of Fig. 5, two leftmost columns of Fig. 6). contrast depends on the amount of lateral inhibition

(4) The first and fourth rows of Fig. 5 represent data delivered to neurons tuned to the center texture by
from trials in which the retinal spatial frequency of the neurons tuned to the surround texture. For any viewing
gratings was 3.3 c/deg, and the ratio of c,:cm was 2:1. condition, the observed reduction of apparent contrast
Note that a decrease in stimulus contrast results in an induced by a parallel surround is always at least as great
increase in orientation specificity. This general trend also as that induced by a perpendicular surround; we thus
holds for the 10.0 c/deg stimuli (second and fifth rows of infer that the neurons tuned to the parallel surround
Fig. 5). deliver at least as much inhibition to the similarly tuned

neurons being stimulated by the center texture than
do the neurons tuned to the perpendicular surround.

GENERAL DISCUSSION That is, neurons tuned to the same orientation deliver
Chubb et al. (1989) conducted similar experimernts to more inhibition to each other than do neurons tuned to

those reported here. However, they used patches of different orientations.
isotropically filtered visual noise rather than sinusoidal
gratings. Their principal findings were: (i) for high Relations to physiology

contrast surrounds, when cm was roughly equal to half Physiological studies of macaque and cat have yielded
the surround contrast, percent reduction of apparent no evidence for any precortical orientation specificity
contrast was around 40%, provided that center and (Hubel & Weisel, 1977). This restricts the neural locus
surround were filtered into the same frequency band; of the interaction between texture-sensitive neurons.
(ii) if the center and surround were presented to opposite Equally restrictive is the result that surround-induced
eyes, no induction occurred; (iii) if center and sur- apparent contrast reduction is a strictly monocular
round were filtered into octave-wide frequency bands, effect.
with center frequencies one octave apart, the percent When we first reported that the lateral inhibition
reduction of apparent contrast dropped down to 15%. of perceived contrast does not spread interocularly
This third result indicates that the reduction of apparent (Chubb et al., 1989), we used tests involving only
contrast induced by the presence of the surround is band-passed isotropic texture to support our claim. To
spatial frequency specific. insure :hat this result held true for high frequency

The current experiments investigate the degree to gratings as well, we re-ran our "interocular induction"

which this reduction of apparent contrast induced by the experiment with two subjects. In this procedure the
surround is orientation specific. center and surround, both 20 c/deg, were presented to

different eyes in a continuous display. Here, and in the
Channels, tuned filters, neurons interleaved same-eye control trials, center and surround

Since the pioneering work of Campbell and Robson were separated by a thin gray annulus to prevent rivalry.
(1968), it has been recognized that the visual system The surround flashed either on or off every 500 msec.
filters the visual signal into a number of relatively Subjects adjusted the contrast of the surround-on center,
narrow spatial frequency bands, which they termed until it appeared equal to that of the surround-off center.
channels. Each of these channels can be modeled As before, this manipulalion was effective in removing
approximately as an array of linear filters with all filters any noticeable interaction between the contrast of the
in the array sharing the same receptive field profile, but surround and the appearance of the center. Thus, we
centered at different retinal locations so as to cover the maintain that the neural locus for the lateral interaction
visual field. Each of these filters produces a positive between texture-sensitive neurons lies at an early cortical
or negative output in response to any given stimulus, or precortical level of processing.
Apparent contrast is proportional to the absolute value Physiological studies of the functional architecture
of filter output. of macaque and cat visual cortex have revealed that.

One way of understanding the results of Chubb et al. outside of layer IV in area 17, binocularly driven cells
(1989) is to suppose that the output values produced by greatly outnumber monocularly driven cells. Thus we
the filters in these arrays are subject to lateral inhibition propose that it is the neurons of this layer which corn-
from other filters in the same array. In particular, the bine texture information, in a spatially antagonistic
vi)I IIB-D
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FIGURE 7. Model for the lateral inhibition of perceived contrast. Central unit tuned to specific spatial frequency and
orientation. Excitatory component a, is the dot product (correlation) of the stimulus with the receptive field of the central unit. I
Surrounding units are tuned to a variety of frequencies and orientations. Their outputs are rectified and summed, giving
preferential weighting (indicated by the filters in the small boxes) to those units with spatial location, frequency and orientation
tuning similar to that of the central unit. The response r, of the central unit is scaled with respect to this combination b. The
dotted arrow indicates a more complex model, in which the responses of surrounding units are scaled with respect to the

response of the central unit.

way, resulting in surround-induced apparent contrast to a balanced mixture of parallel and perpendicularly
reduction. oriented units that have precisely equivalent properties

and occur in precisely the same numbers. Consequently,
A model any orientation specific effect must be attributed to

Simple theory: one-way interactions. Figure 7 diagrams parallel and perpendicular units that have different
proposed interactions between various texture-sensitive properties and may occur in different numbers. Alterna-
units. We use the term units (rather than neurons) tively, one could attribute a proportion q < p of the total
because neurons transmit only positive firing rates (posi- observed reduction in apparent contrast to a population
tive signals); it requires a push-pull pair of neurons of unoriented receptive fields. For conceptual simplicity,
(a neural unit) to transmit both positive and negative for the proportion p of orientation-balanced units, we
signals. Also, we do not differentiate here between a do not discriminate the balanced mixture of parallel
single neuron and many similar neurons that may be and perpendicular receptive fields from a functionally
acting in concert. equivalent mixture of unoriented receptive fields.

The central unit is tuned to a specific spatial frequency The model portrays inhibition as a divisive (shunting)
and orientation. The excitatory component a is the dot form of gain control (Sperling & Sondhi, 1968; Sperling,
product (correlation) of its receptive field with the 1970), for which percent reduction in apparent contrast
stimulus. The surrounding units are tuned to a variety of is the natural dependent variable. The model is similar
spatial frequencies and orientations. Their outputs are in spirit to the models proposed by Sperling (1989) and
first rectified (absolute value) and then added together Heeger (1992). It differs in three respects: it deals in
giving preferential weighting (indicated by the filters detail with the contrast saturation functions that limit
diagrammed in the small boxes) to those units with lateral interactions, it allows for orientation specific
spatial location, frequency and orientation tuning simi- normalization, and reciprocal inhibitory interactions
lar to that of the central unit. The output response r, of between center and surround are treated explicitly.
the central unit is scaled with respect to the rectified sum To apply the simple model to the current experiments.
of surrounding outputs b. We consider this simple model we consider the equilibrium state when a masked center
first, and then a more complex model in which the (contrast cm) with its surround (contrast c,) is equated in
interactions are reciprocal, the output of the surround apparent contrast to the isolated test center (contrast c,).
units being scaled by the rectified output of the center Because the surround inhibits the masked center. the
unit. match is represented as

Since virtually every viewing condition results in some
reduction in apparent contrast, it is possible to construct c, = cI = w,#g.(c.). (2)
a model that attributes a proportion p of this effect I +b'
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The functions g# are monotonically increasing functions reciprocal feedback interactions. This fully interactive
that represent the influence of the surround on the model is far beyond the scope of the present paper, both
center; g, = g, or g• depending on whether the orien- in complexity and in the number of assumptions that
tation of the center is parallel (11) or perpendicular (1) would be needed to fully specify the model. So, we stop
to the surround. The values of the weights w•g > 0 with the first two terms. In this two-term approximation,
depend on the relative orientations 0 of the units, as well the effects of varying the contrast of the center (which
as their retinal locations i. Solving equation (2) for c, and are represented in the denominator) are separable
substituting for c, in equation (1) yields from the effects of varying the contrast of the surround

(which are represented in the numerator). The function
percent reduction in apparent contrast h absorbs the effect of level of matching contrast c. onf. c- 1percent reduction in apparent contrast.

mcc -1b;[ Orientation specificity. The surround, of course, has
= o00 too 4  bthe biggest role in determining the percent reduction

100 100 J "of apparent contrast of the center. We now consider
F 1 1 the complex effects of surround contrast c,, spatial

= 100 1 - (3) frequency f of the center and surround, and relative
I + borientation (11, 1) of center and surround. These are

mediated by the functions g,(c,) and g.(c,). The data
One obvious implication of equation (3) is that the allow us to distinguish between three complementary

percent reduction in apparent contrast should be explanations of the relationship between inhibitory con-
independent of the contrast level c. of the matching -sensitive units with
stimulus. This can be checked against the available data: nections between pairs of texture
c, = 1. c. = 0.5 (Fig. 5) and c, = 1, c. = 0. 1 (Fig. 6). parallel receptive fields and pairs of texture-sensitive

There is a tendency, quite large in some instances units with perpendicular receptive fields (see Fig. 8).
quite (i) Early saturation: g•(Cs) = g(cs) and w1 = k w,

(e.g. subject, JS, 3.3 c/deg) for a smaller reduction in < E s uio. 8(a)]. = g,(c,) a nd i=pw

apparent contrast to be associated with higher levels of 0 < k, < I (Fig. 8(a)]. The function g,(c,) mapping input
contrast to lateral inhibition for parallel surrounds and

cm. The observed variation of percent reduction in the function gj(c,)for connections between units tuned
apparent contract with Cm requires an elaboration of the to prndicular s ouneitical the same, only

to perpendicular surrounds are identically the same, only
simple theory.

An approximation to a theory of fully reciprocal their weights differ. The functions saturate at contrasts
<+!.interactions. A quite natural elaboration of the theory (ii) Low efficiency (same intercept): g4(c,)=g1 (k,_c)

of equation (2) is to consider that not only does the and w, = w,, 0 < k2 < I [Fig. 8(b)J. The function map-
surround inhibit the center but the center reciprocally ping contrast to lateral inhibition reaches the same
inhibits the surround. Because of its smaller size and maximum level for connections between units tuned
contrast, the center may exert less effect on the sur- to different orientations as it does for connections
round than vice versa. A first-order approximation to
this rciprcal theory is simply to elaborate the ter b between units tuned to equal orientations, but it has a

smaller slope (lower efficiency) for connections between
[equation (2)] to a b (no prime) that incorporates units tuned to different orientations than it does for
reciprocal inhibition from. the center: connections between units tuned to equal orientations.

percent reduction in apparent contrast (iii) Low efficiency (non -saturating) [Fig. 8(c)]. The
linear functions shown in Fig. 8(c) satisfy the conditions

F i " on g and w defined in both (i) and (ii). That is, the
= 100 1 - +- j function mapping contrast to lateral inhibition is strictly

increasing. It reaches a different maximum level for

"= 100 1 - connections between units tuned to different orientations

- !w.go(c.) (4) than it does for connections between units tuned to equal

1 +i ]orientations, and it has a smaller slope (lower efficiency)
I + h(c.) for connections between units tuned to different orien-

tations than it does for connections between units tuned
and to use this b instead of only its numerator [b' in to equal orientations.
equation (3)]. The function h(c1 ) is a monotonic increas- While each of these assumptions about the nature
ing function that represents the inhibitory effectiveness of g, and g, can account for much of the data. none
of the center as a function of its output magnitude. of them accounts for all. We consider now empirical

Equation (4) is an approximation because it uses only criteria which, when are satisfied, would refute each of
the first two terms of an infinite series of indirect effects these interpretations. One way to refute early saturation
in which the reciprocal feedback of the center affects the is to demonstrate that, at high levels of surround con-
surround which affects the center, etc. Indeed, the situ- trast (e.g. c, = 1.0) there is no indication of orientation
ation is far more complex. The center is represented by specificity. To refute low efficiency (same intercept).
a large aggregate of diverse neurons, as is the surround. it is sufficient to demonstrate that, at high levels of
Every neuron is involved with all of its neighbors in surround contrast there is distinct orientation specificity.
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Early Saturation Lower Efficency (Same Intecept) Lower Effency (No••-Satuating)

a b C
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FIGURE 8. Three complementary relationships between the inhibition delivered by lateral connections to neurons of equal
and different orientations: (a) Early saturation, the function mapping contrast to lateral inhibition has a lower intercept (earlier
saturation) for connections between neurons tuned to different orientations (dashed line) than for connections between neurons
tuned to equal orientations (solid line). (b) Low efficiency (same intercept), the function mapping contrast to lateral inhibition
reaches the same maximum level for connections between neurons tuned to different orientations as it does for connections
between neurons tuned to equal orientations, but it has a smaller slope (lower efficiency) for connections between neurons tuned
to different orientations (dashed line) than it does for connections between neurons tuned to equal orientations (solid line).
(c) Low efficiency (non-saturating), the function mapping contrast to lateral inhibition is strictly increasing, reaches a different
maximum level for connections between neurons tuned to different orientations as it does for connections between neurons
tuned to equal orientations, and has a smaller slope (lower efficiency) for connections between neurons tuned to different

orientations (dashed line) than it does for connections between neurons tuned to equal orientations (solid line).

I

Low efficiency (non-saturating), can be refuted by contrast is maximal. Whether or not this orientation
demonstrating that, for a given c., an increase in specificity is distinct enough to refute low efficiency
surround contrast does not result in any increase in (same intercept) is a matter for debate. The most parsi-
percent reduction in apparent contrast. monious judgment is to accept all three explanations

For 20.0 c/deg stimuli, only one value of c, was tested, as possibilities. For AS, only with c. = 0.1 does there
so we cannot refute low efficiency (non-saturating). appear to be any significant amount of orientation
However, we can refute low efficiency (same intercept) specificity, when c, = 1.0. Here again the best policy is
because, for both subjects, distinct orientation specificity not to discredit any of the three explanations. A sum-
is apparent in the data (Fig. 5). mary of the possible explanations for each subject's data,

For 10.0 c/deg stimuli again we are able to refute low at each spatial frequency, is given in Table 2.
efficiency (same intercept). There is distinct orientation
specificity when c,= 1.0 for both subjects, especially
when c. = 0.1 (Fig. 6). For 10.0 c/deg stimuli we are also CONCLUSION

able to refute low efficiency (non-saturating). There is Chubb et al. (1989) demonstrated that the lateral
no appreciable difference between the data from the inhibition of perceived textural contrast is mediated by
c, 1.0, c. = 0.1 viewing condition and the c,-=0.2, arrays of neurons that are narrowly tuned for spatial
c.,-- 0.1 viewing condition, for either subject. frequency. The results of these experiments indicate that

For 3.3 c/deg stimuli, however, things are much less they are tuned for orientation as well. This research also
clear cut. Both subjects' data display distinct increases in clearly indicates that the mechanism responsible for the
percent reduction in apparent contrast with an increase lateral inhibition of perceived textural contrast receives
in c,. This prohibits us from discrediting low efficiency equal inputs from both the on-center and the off-center
(non-saturating). For JS, only with c. = 0.03 does there visual pathways.
appear to be some orientation specificity, when surround
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ON OFF

FIGURE 2. Illustration of "ON" and "OFF" textures. A vertical (or horizontal) slice through each texture is diagrammed.
Mean luminance L. is indicated on the ordinates.

Insofar as the on-center and off-center ganglion cells on-center cells in whose receptive field centers they fall,
can be modeled as having center-surround antagonism and the dark spots will increase the firing rates of
and a (soft) threshold for firing, then the bright spots in off-center cells. Various plausible assumptions about the
our textures will selectively increase the firing rates of responsiveness of on- and off-center systems make a high
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FIGURE 3. Stimuli for Expt I. (a) On-center stimulating center, on-center stimulating surround (ON/ON). (b) On-center

stimulating center, off-center stimulating surround (ON/OFF). (c) Off-center stimulating center. on-center stimulating surround
(OFF/ON). (d) Off-center stimulating center. off-center stimulating surround (OFF/OFF).
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Information Transfer in Iconic Memory Experiments

Karl R. Gegenfurtner and George Sperling

To report letters from briefly exposed letter arrays, subjects must transfer information from a
rapidly decaying trace (iconic memory) to more durable storage. In a partial-report paradigm, we
systematically varied the proportion (P) of trials with a long cue delay relative to a short cue delay.
Practiced subjects used the same transfer strategy independent of P. Data from a partial-report-
plus-masking experiment were used to construct a computational model that accurately predicted
partial- and whole-report performance with and without masks. Assumptions: Prior to a cue,
subjects attend primarily to the middle row of a three-row display, resulting in nonselective transfer.
After the cue, they attend only to the cued row. Transfer rate is the product of iconic legibility
(which depends on time and retinal location) and attention allocation (which shifts after a cue).
Cumulative transfer is limited by the capacity of durable storage.

When subjects are asked to report all the letters they can been taken as evidence for a second kind of memory, which
see in a brief flash of a letter array, they usually can report Neisser (1967) called "iconic memory." Neisser assumed
only four or five letters. The number of reported letters is that initially all items are held in iconic memory and, at the
independent of the number of displayed letters (when more time of the cue, the cued letters are transferred into a longer
than about five letters are displayed; e.g., Sperling. 1960). lasting storage.
One might therefore infer that the limit on the number of
letters reported is due to a limited memory capacity, tradi-
tionally called the "span of apprehension" (Kulpe, 1904; Durable Storage
Wundt, 1899). However, a partial-report procedure demon-
strates that subjects are able to store a dozen or more items The partial-report experiment itself does not prove the ex-
in a very short-term memory (Sperling, 1960). istence of two different memories. The cue delay effect might

In a typical partial-report experiment, a 3 X 3 letter matrix be caused by one type of memory, which decays to four or
is followed by a cue (e.g., a high-, middle-, or low-pitched five letters, and the subject has control over which letters
tone) that indicates the row of the matrix that the subject has survive. However, experiments with a poststimulus mask
to report. Figure 1 shows :esults from a partial-report ex- (Averbach & Sperling, 1960; Sperling, 1960, 1963) show
periment. When the cue occurs at the same time as the letters that there is more than one memory. When a poststimulus
or shortly afterwards, the subject can report all the letters in mask comes soon after stimulus offset, there is a marked
the cued row. Because the subject does not know in advance decrease in performance relative to the no-mask control con-
which row will be cued, perfect performance implies that all dition. Therefore the storage that is probed in the partial-
the items are stored and still available at the time of the cue. report experiment is destroyed by the mask. When a post-
When the cue is delayed, partial-report performance de- stimulus mask comes later, say, 1 s after the stimulus, it does
creases, until it finally reaches the level of whole report at not influence partial reports at all. The interaction of mask
cue delays of about 500-800 ins. and cue delay implies that there are at least two types of

The decay of partial-report accuracy with cue delay has memory. One, iconic storage, has a large capacity, decays
rapidly, and is destroyed by a mask following the stimulus.
The other storage can hold only a limited number of items
but is not affected by masking and seems to have a long

Karl R. Gegenfurtner. Howard Hughes Medical Institute and lifetime. Following Coltheart (1980), we call the second type,
Center for Neural Science, New York University; George Sperling, of memory "durable storage."
Psychology Deparmnent and Center for Neural Science, New York There have been several attempts to discriminate among
University. types of durable storage in partial-report and similar types of
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1.0 9 ferred in the first 100 ms after stimulus display (Sperling,
1963, 1967). This is approximately the capacity of durable

Sstorage. Thus the strategy of nonselective readout at short cue
•• • 6 • delays might have the disadvantage of overcrowding durableU 6. - storage, thereby slowing down the subsequent transfer from

................. < the cued row.As several authors (Coltheart, 1980; Dick, 1969; Hall,

0 3 . 1974; Merikle, Lowe, & Coltheart, 1971; Mewhort, Johns.
0. & Coble, 1991; Mewhort, Merikle, & Bryden, 1969; Sakitt,

1976; Sperling, 1960; Sperling & Dosher. 1986) have sug-
gested, it is possible that subjects deliberately use different

0.0 0 strategies at different cue delays. On trials with long cue
0 100 200 300 400f 1000 delays, subjects use nonselective readout, to avoid the

Cue Delay in Milliseconds disaster of having iconic memory decay to illegibility before* any items have been transferred. At short cue delays, subjects
Figure 1. Method and results of a typical partial-report experi- ay equal aten transfer its
ment. (The abscissa is the time, relative to the onset of the letter pay equal attention to all rows and do not transfer items
array, of a tonal cue to report a given row. The ordinate is the mean nonselectively, to avoid filling durable storage. Of course,
proportion of correctly reported letters in the cued rows. Open selective strategies would be possible only when partial-
circles represent the performance of Subject BL. The filled bar on report experiments are run in a blocked design, as they typ-
the right indicates performance in a whole-report experiment: The ically have been (e.g., Irwin & Yeomans, 1986; Mewhort et
shaded area between the dashed line and the dots represents par- al., 1981; Sakitt, 1976; Sperling, 1960). In each block of
tial-report superiority [relative to whole report]. The rightmost data trials, only one cue delay was used; thereby, subjects can use
point indicates performance measured at a cue delay of 1,000 ms, the strategy that is most advantageous for the particular cue
which is comparable to the delay involved in the whole-report delay,
procedure.)

(Efron, 1970; Sperling, 1967), the integration time between Overall Plan
successive stroboscopic flashes (Eriksen & Collins, 1967;Hogdn &Di~llo 194),andman oter rocdurs ~In our first experiment. we attempted to discriminate be-

tween short-cue-delay and long-cue-delay coding strategiesreviews by Coltheart. 1980; Long, 1980). Because we are that
concerned only with partial-report experiments here, we subjetsrmight us in icnic or experiment an
can bypass these issues and deal only with iconic memory
and durable storage without any further specifications or essential to resolve the possibility that subjects tailor their
subdivisions. strategy to the particular cue delay before we proceeded

with Experiment 2, a parametric investigation of partial-
report accuracy in 25 combinations of Cue Delay X Mask
Delay. The data of Experiment 2 enable us to define a

Selective and Nonselective Transfer model that mathematically describes the time courses of
iconic decay and the twin processes of selective and non-

In a typical iconic memory experiment, at intermediate cue selective retrieval. The model, which aggregates all the
delays, the quality of the iconic image has deteriorated so that rows of a three-row stimulus, is very successful computa-
few if any additional items can be transferred into durable tionally, but it contains two enigmas. These enigmas are
storage. If the cue were to be further delayed until the iconic resolved by noting that characters from the middle row are
image had decayed completely, no tansfer from the cued row transferred to durable storage much more rapidly than
would be possible, and performance would decrease to 0. As characters from the other rows and embodying this fact in
shown in Figure 1, this is not the case. Performance at long an elaborated model that treats each row separately. We
cue delays reaches asymptote at whole-report performance, consider how our model differs from prior computational
not at zero. approaches to iconic transfer. Finally, we show that our

The failure of partial-report accuracy to decay to zero as formulation of the role of attention in selective transfer is
a function of cue delay is almost certainly due to what Aver- consistent with many other attentional phenomena.
bach and Coriell (1961) called "nonselective readout." In the
time between stimulus and cue, subjects start to transfer
items from iconic memory to durable storage. This transfer Experiment 1: Coding Strategies
is nonselective with respect to the cue. It saves subjects from
performing badly at long cue delays. On the other hand, the Suppose that subjects in an iconic memory experiment use
letters transferred nonselectively use up some of the limited a strategy of selective transfer at short cue delays and a strat-
capacity of durable storage. By the time the cue appears, egy of nonselective transfer at long cue delays. We wished
durable storage might already be filled with items from the to estimate the cost of each strategy when it was used in-
noncued rows. For example, about four items can be trans- appropriately and the benefit of each strategy when it was
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used appropriately in terms of the cost-benefit analysis of Method
Posner, Nissen. and Ogden (1978). The problem in estimat-
ing the cost of nonselective transfer at short cue delays was Subjects. Two graduate and two undergraduate students at New
to get the subject to use nonselective transfer (an inappro- York University participated in the experiment for pay. All subjects
priate strategy) at short cue delays. Here is the trick. In a had normal or corrected-to-normal vision. Each subject had a min-
blocked situation with only long cue delays, we assumed imum of five practice sessions of 200 trals each; for some subjects,

practice continued longer until their performance in a regularsubjects would certainly use nonselective transfer (the ap- partial-report experiment with equally likely cue delays reached a
propriate long-delay strategy). When we included very few steady state. Subjects BL and PC were presented 3 X 3 arrays.
trials with a short cue delay in such a block, subjects were Performance for subjects RS and BF was better, so they were shown
still better off from a decision-theoretic viewpoint using non- 3 X 4 arrays.
selective transfer throughout the whole session. Assuming Stimuli. All experiments were controlled by a Digital Equip-
that subjects would try to maximize their performance, we ment Corporation PDP-l 1/23 computer. The letters were presented
predicted they would use the long-delay strategy in blocks of on a Hewlett Packard 1310A cathode ray tube (CRT) with a fast
predominantly long delays and the short-delay strategy in white P4 phosphor. The CRT was driven by a specially designed
blocks of predominantly short delays. The difference in per- display interface (Kropfl, 1975) and software for real-time vision

experiments (Melchner & Sperling, 1980). Tones were presented onformance between (a) the few short-delay trials embedded in Sennheiser HD414 headphones. A Wavetek Model 159 waveform
a block of predominantly long-delay trials and (b) a pure generator was used to generate the tones, which were set to a com-
block of short-delay trials provided an estimate of the cost fortable listening level. The timing of the actual stimulus sequences
of using nonselective transfer (the inappropriate, long-delay was verified by independent oscilloscopic measurements and was
strategy) at short cue delays, accurate to within I ms.

A similar argument was posited for long cue delays. We The stimuli consisted of a 3 X 3 or 3 X 4 array of letters. Figure
predicted that when a short cue delay was presented 95% of 3a shows a photograph of a typical stimulus. The whole display
the time, subjects would use selective transfer (the appro- extended 3.10 or 4.5* of visual angle, respectively, at a viewing

distance of 128 cm. Each letter was 1.2 cm high and 1.0 cm wide,priate strategy). On the occasional long cue delays, we eX- with a distance between letters of 2.0 cm horizontally and 1.8 cm
pected their performance to be very poor. Figure 2 illustrates vertically. Viewing was binocular.
a predicted outcome of this sort of experiment. Performance The luminance of the letters was determined by measuring the
at long cue delays was expected to decrease markedly with luminance of a uniform rectangle with a United Detector Technol-
a reduction in the probability of the occurrence of a long cue ogies photometer, which had been calibrated against a standard light
delay. Performance for both types of cue delay was expected source. The rectangle had the same pixel intensity as the letters, the
to be highest in the blocked design condition. same pixel spacing, and the same number of dots as the letter bit-

maps. The measured luminance was 34 cd/m2 . The letters were
displayed on a dark background of approximately 0.05 cd/m2 . The

1.0 9 room was dimly illuminated, and the wall behind the monitor had

Short Cue Delay a luminance of approximately 1.2 cd/m 2.The individual letters were
0 randomly chosen without replacement from the set of 20 conso-
. nants, excluding Y.

d 6 " Procedure. Each partial-report session consisted of 200 trials.
> Figure 4a shows a flow diagram for one trial. The subject initiated

"0.5 - the trial by pressing a button. After a random interval of 1.0-1.5 s,
the stimuli were displayed for 50 ms (five repeated frames at 10 msCL. 3 , per frame). At the time specified by the cue delay, a tone was

0.. sounded on the headphone for 100 ms. The frequencies of the cue
tones were 225, 600. and 975 Hz for the bottom, middle, and top
row, respectively. The time for the cue delay was measured from the

0.0 I ' 0 onset of the stimulus. Typically, cue delays in partial-report exper-
0.0 0.5 1.0 iments have been specified in terms of the time from stimulus ter-

Probability of the Long Cue Delay mination (e.g., Sperling, 1960, and many others). Our reason for
specifying a cue delay relative to stimulus onset was that the delay

Figure 2. Strategy analysis: The expected outcomes of the cost then corresponded to the time for which stimulus information was
analysis experiment in which either a long or a short cue delay can available before a cue appeared.
occur on a trial. (The abscissa is the probability, within a block of Cue delay could be varied independently of the other stimulus
trials, of the long cue delay. The ordinate is the mean proportion of parameters, and the cue could occur before stimulus onset, during
correct reports, conditioned on the type of cue [long vs. short] the stimulus, or after stimulus termination. After the stimulus se-
delay. The upper curve is the expected performance with short cue quence, the subject was prompted on the screen for a typed re-
delays: the lower curve represents long cue delays. Performance at sponse. After the subject responded, the correct letters were shown
long cue delays is expected to be poor when long cue delays occur on the screen, together with the subject's response. Then the next
rarely [bottom left) and to increase as they become predominant, trial started. A response letter was scored as correct only when it was
Performance at short cue delays is symmetrically opposite. The reported in the correct serial position.
solid bars through the data points indicate standard errors. Their In this experimental design, it is inevitable that the low-
differing length indicates that in the low-probability conditions, probability condition for one cue delay coincides with a high prob-
fewer trials will be available.) ability for the other cue delay. Therefore the number of observations
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Figure 3. Panel a shows a typical stimulus display. (In both Experiments I and 2. all letters were
white on a black background, their contrast is reversed here for better reproducibility. Subjects BF
and RS used a 3 X 4 matrix of letters: Subjects PC and BL used a 3 X 3 matrix.) Panel b shows
a mask. (Like the stimulus, the mask is shown in reversed contrast. Each component masking pattern
consists of five different letters displayed in extremely rapid succession.)

for the low-probability conditions is smaller. Performance was eval- The finding that performance was better for short- than
uated for cue delay probabilities of 0. 1, 0.5, 0.9, and 1.0. The short long-delay cues indicates that subjects indeed used selective
cue delay used was always 0 ms. The duration of the long cue delay transfer for short-delay cues.
was chosen separately for each subject so as to achieve a perfor- Finally, with respect to experimental procedures, if sub-
mance level that would still be better than whole report. The delay jects have more than one good strategy available, the par-
values were 400, 800, and 1,000 ms. ticular mixture of strategies that they use would depends on

the particular mixture of cue delays they confront. The
Results finding that subjects used the same strategy for short- and

at long-delay cues greatly simplified the design of Experi-
The data were analyzed separately for each subject Figure ment 2. The mixture of cue delays could be optimized for

5 illustrates the results for subjects PC and BE Table I sum- obtaining the desired data, unconstrained by (non)effects
marizes the data for all 4 subjects. If there is no effect Of on subjects' strategies.
probability of occurrence, then performance should not vary The finding that a single transfer strategy was used at all
and all data points for a fixed cue delay should fall on a cue delays is in striking contrast to previous observations
straight horizontal line. We therefore estimated slope and suggesting at least two strategies. Sperling (1960, Figure 5)
intercept of the best fitting lines (in the least squares sense) showed a- subject whose short-delay-cue strategy failed
through the data. against long-delay cues and whose long-delay-cue strategy

Table I shows that the slopes of least-squares-estimated failed to take advantage of short-delay cues. Another (fa-
lines through the data points were all negligibly sinall. Seven mous) subject (Sperling, 1990, Figure 6) retained his short-
of eight slopes were negative, and none of them was sig- delay-cue strategy for too long a cue delay, thereby produc-
nificantly different from 0 (according to t tests at the .05 ing a nonmonotonic iconic decay function. The simplest
significance level). explanation for the discrepancy between the present data and

Sperling's data is that the earlier data were obtained in the
Discussion first few hundred trials with naive subjects whose perfor-

mance was clearly nonoptimal. The present data show that,
Three unambiguous aspects of the data lead to three sig- after practice, subjects acquire a single strategy that is ef-

nificant conclusions. fective for both long and short cue delays.
Performance in response to a low-probability long-delay

cue did not approach zero but reached asymptote at a level
typical for whole report. This means that subjects always Experiment 2: Time Course of Iconic Memory
used nonselective transfer.

Performance in response to a low-probability short-delay The results of Experiment I left us with two open ques-
cue was not impaired compared with that in response to a tions: How do subjects avoid overfilling durable storage
high-probability short-delay cue. We infer that nonselective when selective transfer follows nonselective transfer? More
transfer did not involve any additional cost for the subject, generally, how are nonselective transfer and selective trans-
even on trials in which selective transfer was also used. fer combined? To address these questions, we introduced a
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Figure 4. Panel a is a flow chart for a trial. (The three parallel streams for letters, cue, and mask
indicate that the onset times for these could be varied independently to produce any arbitrary
ordering. The mask was used in Experiment 2 only.) Panel b is a flow chart for the production ot
a mask (A sequence of five different frames is painted with 6-ms interframe intervals; the sequence
of five is repeated 20 times.)

variably delayed poststimulus mask into the partial-report design, we obtained estimates for the amount of transfer to
procedure. durable storage in each interval.

An appropriately chosen visual postexposure masking Figure 6 illustrates the logic of the masking paradigm in
stimulus should have two properties: It should destroy the three kinds of conditions. In the first condition (Figure 6a),
contents of iconic memory but leave durable storage unim- the cue occurs after stimulus onset and before mask onset.
paired. For the destruction of iconic memory, a mask is con- During the interval between stimulus onset and the cue, the
structed in such a way that when it and the test stimulus are subject does not know which row will be cued. Therefore,
exposed simultaneously, the test stimulus is masked to the all transfer is nonselective with respect to the cue. After
point of unintelligibility (Kahneman, 1968; Sperling, 1963). the cue has occurred, the subject switches attention to the
The ability to mask the test stimulus completely when it is cued row and transfers letters selectively from that row.
strongest (i.e., when it is physically present) implies that the We call these two kinds of information transfer from
postexposure masking stimulus will even more effectively iconic memory to durable storage nonselective and selec-
mask the test after it has been weakened by decay. The ability tive transfer, respectively.
to leave durable storage unimpaired is demonstrated by Two special cases lead to pure selective and pure nonse-
showing that long mask delays yield equivalent performance lective transfer. When the mask comes before or at the same
to no-mask control conditions. Such a poststimulus mask time as the cue, only nonselective transfer occurs (Figure 6b).
serves to limit the time for which information from iconic When the cue comes at or before stimulus onset, subjects use
memory is available for transfer to durable storage. By vary- selective transfer throughout (Figure 6c). In all other cases
ing cue delay and mask delay independently in a crossed (Figure 6a), there is a mixture of selective and nonselective
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Figure 5. The absence of strategy effects. (Results of Experiment I are shown for Subjects PC and
BF. The ordinate is the proportion of correct reports; the abscissa is the probability of the long cue
delay in a block of 200 trials. The two lines in each panel are the best fitting horizontal lines to the
data for each cue delay. The vertical bars represent the standard error [_. I o].)

transfer. Because the cue is irrelevant to nonselective trans- Masking stimulus. In Experiment 2. a masking pattern (the
fer, the pure nonselective conditions should yield the same mask) was displayed at a specified mask delay, which could be
results as a whole-report experiment with similarly delayed shorter or longer than the cue delay. A mask consisted of five dif-
poststimulus masks. This whole-report experiment was car- ferent letters displayed in extremely rapid succession at each spa-
tied out as a control condition. tial location, so that the letters were summed by the visual system

and could not be recognized individually (Budiansky & Sperling.
1969). All the letters comprising one frame of a mask were

Method painted within 6 ins, a new frame was presented every 6 ms, and
the sequence of five different frames was repeated 20 times for a

The general experimental methods and subjects were the same as total mask duration of 600 ms. The flow diagram in Figure 4 il-
in Experiment I except for the following changes. lustrates this process. The intensity of masks, measured in the

Subjects. Two subjects, BL and BF, who had served in the same way as the intensity of the letters in Experiment I, was 47
Experiment I, served again in Experiment 2. It should be remarked cd/r 2 . Figure 3b illustrates a typical masking pattern. In a brief
that BF was able to report one or two items more than average from control experiment, it was verified that recognition of a stimulus
brief visual exposures. This would place him in the upper 10-20% letter was at chance when it was presented at the same time as a
of subjects in our experience. He was persuaded to serve in this mask.
tedious experiment in our hope of discovering some other unusual Procedure. Mask delays of 100. 200, 300, 400, and 500 ms
ability. However, except for a slightly higher level of performance, were used in the experiment. The cue delays chosen were 0. 100,
his data were typical in all respects. In addition, ihe two other sub- 200, 300. and 400 ms. On each trial, a cue delay and mask delay
jects from Experiment I served for about half as many trials as BL were chosen randomly in a mixed-list design. Each subject was
and BF. Their data did not differ in any important ways from those tested on approximately 5,000 trials in 45-min long sessions of 200
of Subjects BL and BF and are not presented here. . trials each.

Table I
The Proportion of Correctly Reported Letters as a Function of the Probability of Cue Delays in Experiment I

Probability of cue delay

Subject/cue No. of No. of No. of No. of
delay (ms) 0.1 observations 0.5 observations 0.9 observations 1.0 observations Slope

BF
0 0.897 92 0.905 283 0.864 736 0.904 200 -0.015
1,000 0.719 64 0.648 317 0.63 708 0.598 200 -0.012

PC
0 0.9 40 0.887 140 0.879 360 0.863 200 -0.026
400 0.757 40 0.743 140 0.727 360 0.663 200 -0.082

BL
0 0.884 23 0.916 103 0.923 181 0.912 80 0.034
800 0.667 19 0.581 97 0.605 177 0.648 53 -0.026

RS
0 0.983 35 - - 0.956 244 0.992 32 -0.068
1,000 0.717 23 - - 0.714 365 0.631 80 -0.06

Note. Slope data indicate the slope of a least squares fitted line through the data points.
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mask delay as a parameter. As in other partial-report exper-
Cue Mask iments, performance dropped as cue delay increased, con-

firming that subjects made efficient use of the cue. A strictly
monotonic decrease in proportion correct as a function of cue
delay means that using selective transfer in any time interval
yielded more correctly reported letters than did nonselective
transfer.

Figure 8 replots the data of Figure 7 with mask delay as
the abscissa and cue delay as a parameter. The effect on

" -. performance of mask delay was also monotonic; the number
of transferred letters increased rapidly with increasing mask
delay. A monotonic increase in proportion correct with in-

SMask creasing mask delay means that additional available time for
Cue processing the stimulus was always useful.

"- ~ Pure nonselective transfer. Figure 9 shows data for pure
nonselective transfer-all the trials on which the cue oc-
curred simultaneously with or after mask onset. Performance
increased very quickly in the first 100 ms and then reached

U . -asymptote at around four or five letters. This indicates that
these subjects were able to read about four letters in less than

Z ý:" 100 ms, which is at the same level that other investigators
3'• have found (e.g., Sperling, 1963). Figure 9 also shows the

S":b data from the whole-report procedure. Whole-report accu-
- "racy is slightly lower than partial-report accuracy. We assume

that this slight whole-report deficit was due to the larger
S Mask number of letters that needed to be reported. Subjects might

have occasionally forgotten a letter while reporting the ear-
lier ones. Therefore the partial-report-plus-masking proce-
dure seems to be a slightly better indicator of nonselective
transfer than whole report.

The extreme right of Figure 9 shows that whole reports
with a 500-ms mask yielded equivalent performance to that
in the no-mask control condition. This result indicates that
the masking stimulus satisfied the second condition stated for

I C a successful mask: It did not interfere with the contents of
durable storage.

0 100 200 300 400 Pure selective transfer. The subset of conditions with a
Time (msec) cue delay of 0, which indicate pure selective transfer, yielded

data that are superficially similar to nonselective-transfer
Figure 6. The logic behind the partial-report-plus-iask experi- data when graphed in terms of the actual number of letters
ment. (Panel a shows nonselective and selective transfer. The cue reported, as shown in Figure 10. Accuracy increased mono-
occurs before the mask. nonselective transfer occurs before the
cue. and selective transfer occurs during the interval cue to the onically with mask delay. However, selective transfer cook
mask. Panel b shows pure nonselective transfer. The cue occurs at longer than nonselective transfer to approach its asymptotic
or after the onset of the mask. Nonselective transfer ceases after level (approximately 400 ms vs. 200 ms). The asymptotic
onset of the mask; there is no resumption of transfer after the cue accuracy level of selective transfer was much higher than that
occurs. Panel c shows pure selective transfer: The cue comes at or of nonselective transfer (90% vs. 50%), indicating a partial-
before the onset of the stimulus.) report advantage. As in the case of nonselective transfer,

when a mask was delayed 500 ms, there was only a negligible

Whole report. In the whole-report condition, the subject was difference between mask and no-mask conditions.
asked to report all the letters in the display. The same mask used
in the partial-report condition was used. The whole-report practice An Aggregate-Row Model of Iconic Memory
and test conditions were run in separate sessions after the subjects
were already practiced in the partial-report task. Data were collected Experiment 2 characterized purely selective and purely
only after performances had reached asymptote. nonselective transfer. In an attempt to explain how they both

combine in the overall transfer to durable storage, we de-
Results veloped a model that aggregates performance over rows.

Subsequently we found that although the model gave ex-
As in Experiment 1, the data were analyzed separately for cellent predictions of the present data, it left some serious

each subject. Figure 7 shows the effect of cue delay with residual problems. To resolve these, we developed a more
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Figure 7. Accuracy of partial reports as a function of cue delay, with mask delay as the parameter:
Experiment 2. (The ordinate indicates the proportion of correctly reported letters. The right ordinate
indicates the corresponding number of letters transferred to durable storage. Each data point
represents 150-250 trials. Panels indicate data for Subjects BL and BF: BL viewed 3 X 3 displays,
and BF viewed 3 X 4 displays [Rows X Columns]. The curves drawn through the data points are
the best fitr.ng predictions of the two-process aggregate-row model described in the text.)

complicated model in which each row is considered sepa- sumption allows us to subtract nonselective transfer from
rately. rhe formulation of the aggregate-row model is pre- overall performance to derive selective transfer at various

d in this section. cue delays.
The simplest combination rule is additivity of the two

transfer processes. (Averbach & Coriell. 1961, made a dif-

Basic Assumptions: Additiviry of Nonselective and ferent assumption, which is considered in the Discussion.) To

Selective Transfer implement additivity of transfer processes, we make the fol-
lowing assumptions. (a) Letters are transferred nonselec-
tively from stimulus onset on until the cue comes. (b) Se-

Both selective and nonselective transfer contribute to the lective transfer begins at onset of the cue and ends at onset
overall performance. In Experiment 2, only the contribution of the mask, when all further information transfer out of
made by nonselective transfer was directly observable. The iconic memory stops. (c) The total number of letters trans-
contribution of selective transfer could be observed only in ferred is the sum of both transfer processes. Specifically,
the absence of nonselective transfer, that is, when selective given a cue at time c and a mask at time m, the total number
transfer started immediately at stimulus onset with a cue of letters, L, ., transferred from the cued row is the sum of
delay of 0. We now estimate selective transfer at nonzero cue the number of nons-,lectively transferred letters from the
delays. We proceed by making an assumption about the com- cued row, (113)Nc,. m, and the number of selectively transferred
bination rule for selective and nonselective transfer. This as- letters from the cued row, S ,,:

1.0 Cu Delay 12 1.0 Cue Delay 9

S•• ..'" . ..

.ý4300'30

0.5 0.5 . C

4 3.-

0.0 o.0.1 o I, , 0, 0,
0 100 200 300 400 50 606 0 100 200 300 400 500 60

Mask Delay in msec Mask Delay in msec

Figure & Results of Experiment 2 replotted to show the accuracy of partial reports as a function
of mask delay, with cue delay as the parameter. (The vertical bars through the data points indicate
the standard error of the proportions. The data points for each cue delay are connected by dotted
lines. See Figure 7 for details.)
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Figure 9. Pure nonselective transfer as a function of mask delay. (The open symbols are the
proportion of correct partial reports on trials in which the cue occurred after mask onset [Figure 6bl;
the filled symbols are the proportion of correct reports in whole-report-plus-mask trials. The
horizontal bar at the right border indicates performance on whole-report trials without masks. The
predictions of the aggregate-row model of iconic memory for partial and whole reports are indicated
by solid and dotted lines, respectively. The dashed line shows the partial-report predictions of the
model described in Equation 13, averaged over the three rows.)

L, S, + V3N.,:. (1) 8 and 11 is that the nonselective transfer component has been
subtracted from overall performance. All the curves for se-

The factor 'A express the fact that because there are three lective transfer appear to be parallel, shifted vertically. This
equally likely cues, only one-third of the nonselectively implies that only one factor determines selective transfer-
transferred letters are expected to be in the cued row. To apply time elapsed since stimulus onset. Selective transfer that be-
Equation 1 to our data, we note that we already know two gins, for example, 200 ms after stimulus onset will transfer
of its three components. If we assume, for the moment, that just as many items in the time period from 200 to 500 ms as
all letters that are transferred from iconic memory to durable selective transfer that began at 0 ms. Because the rate of
storage are reported, then the partial-report data directly yield selective transfer depends only on the elapsed time since
the total reporteci letters, L ,m,. Partial reports made when the stimulus onset, it directly reflects the quality of the stimulus
cue occurs simultaneously with or after the mask give the information.
pure nonselective component, 11N,,., (c >i m), the analysis To test the assumption of additivity, we fit the best set of
illustrated in Figure 9. The difference between L,.,, and perfectly parallel curves to our data. We do not make any
113N,. is the selective transfer, So, ,. assumptions about the form of the selective or nonselective

Figure 11 shows the values of selective transfer derived transfer curves. The solid line segments in Figure 11 all de-
from our data. Note that the only difference between Figures rive from a single curve that has been translated up or down.

1.0 9

8. 6
• 0.5 0.5

oon

0.0 1 200 I 0I I BF 0 0.0 0• 0, ,0 100 200 300 400 500 0 100 200 300 400 500

Mask Delay in msec Mask Delay in msec

Figure 10. Pure selective transfer as a function of mask delay. (The filled symbols show the
proportion of correct partial-reports on trials on which the cue occurred at stimulus onset (Figure 6c].
The solid line shows the prediction of the aggregate-row model of iconic memory. The horizontal
bar on the right border shows observed performance in a partial-report experiment without masks
and a cue delay of 0. The solid line shows the predictions of the model described in Equation 14,
averaged over the three rows.)
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Figure 11. Test of the additivity assumption in the aggregate-row model. (The curves are based on
Figure 8--accuracy of partial reports as a function of mask delay, with cue delay as the parameter.
Cue delays are in milliseconds: Filled circle = 0, open circle = 100, filled square = 200, open
square = 300, triangle = 400. The assumption of algebraic additivity of transfer [Equation 21
permits the subtraction of the estimated nonselective component of transfer [Figure 91 from each
curve of Figure 8 to yield the residual selective transfer. The symbols show observed values of
residual selective transfer after various cue delays. The solid curves show the predictions that are
based on vertical translations of a single generic selective-transfer curve [e.g., delay 01. The form
of the generic selective-transfer curve was estimated from the data.)

The assumption of additivity holds well for our data. The Figure 10 shows the best fit of Equation 4 to our data for
root-mean-square error is 0.016 for subject BL and 0.023 for selective transfer. Again, deviations between the theory and
subject BF. the data are small. From Figures 9 and 10, we see that the

growth rates of nonselective and selective information trans-
Some Parametric Assumptions fer curves are quite different, reflecting their different time

constants, rN and 's.
The pure information transfer functions for the nonselec- Selective transfer for cue and mask delays with c : m

tive transfer process in Figure 9 and the selective transfer in occurs only during the interval from c to m:
Figure 10 can both be approximated by simple exponential S' .(f) = So..(t) - So. (t). (5)
growth functions of the form

Of course, Sc..(t) is 0 whenever c a m. The total number
Alt) = C [1 - exp(-://)]:, (2) of letters available for report in the cued row as a function

where C is the asymptotic level of performance, and T is the of time is given by a generalization of Equation 1:
time constant of the growth process at an f(t) of 63% of C. L, (t) = S, (t) + '1N,.(t). (6)

We denote nonselective transfer as N.,,.(t), and selective
transfer as S .. (t). The indices remind us that transfer may The total number of letters available for whole reports is
depend not only on t, but also on the tpecific values of the simply N..*. .

cue delay, c, and the mask delay, m. Foir pure nonselective A final complication is that the time a subject needs in
transfer, the cue comes after the mask, and we obtain order to interpret the cue may be greater than zero. To admit

N,..(t) = CN (I - exp(- dTW)], c a m, (3) this possibility, a parameter Tq, the cue interpretation time, is
included in, the model as an offset parameter, substituting c

where Cv is the capacity of durable storage and Tv is the time + Tq for c in Equation 6.
constant for nonselective transfer. Figure 9 shows Equation Figure 12a summarizes the descriptive model. Two cu-
3 with the constants chosen to optimize the fit to our data. mulative functions, N.. ,,(t) and S,. (t), describe informa-
The deviations of data from theory am very small. tion transfer from iconic memory to durable storage. Before

Purely selective transfer occurs when the cue comes at (or occurrence of a cue, transfer is governed by Nc..(t); after the
before) the stimulus onset. Similarly to Equation 3, we obtain cue, by Sc. (t). It is useful to think of the cue as a switch that

So. (t) = Cs [1 - exp(-t/Trs)]. (4) toggles between the two transfer rates.
Predictions for a partial-report-plus-mask experiment are

In Equation 4, Cs is the maximum number of letters the represented in Figure 12b. The number of letters available for
subject can transfer from one line. In general, Cs will be very report follows the trajectory to CN until the occurrence of a
close to the number of letters in one line. However, Cs has cue. It then follows the trajectory described by S, .(t). After
to be estimated because subjects are not perfect, and they the onset of the poststimulus mask, the predicted trajectory
occasionally miss a letter even in the easiest conditions. The is flat.
time constant for selective transfer is Ts. Figure 12b shows that the cue is predicted to help most
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C,,a 97% of the variance in the data for Subjects BL and BFrespectively. The rootbmean-square errors are 0.089 and

0.095, respectively.
- (2 _) C The same subjects served in an earlier partial-report ex-

periment, similar to Experiment I but without poststimuLus
"" N 7 / masks. These earlier data can be fit by the model derived

from Experiment 2 without estimating any new parameters.
Figure 13 shows the partial-report-without-masking data and
the model predictions. The parameter values were estimated

-7 d eaoy from the experiment using masks. The fit obtained this way
LJ.J does not deviate significantly from the data. The dashed lines

in Figure 13 show the contributions of nonselective transfer.
The model indicates that, after stimulus termination. selec-
tive transfer decreases much faster than one might expect
from the relatively slow decay in partial-report superiority.

Table 2 summarizes the parameter estimates for Subjects
BF and BL. Two sets of estimates are shown. One set, already
described, was derived from the subsets of the data that pro-
vided the pure nonselective transfer and the pure selective

b transfer analyses illustrated in Figures 9 and 10. A second set
Cue M of parameters was estimated from the complete data of the

partial-report-plus-masking experiments. The comparison of
_o o these estimates is an indicator of the overall consistency of

= 197 the model, which is quite good.
For each subject, the nonselective capacity parameters,

S.CNs. are very similar in the three relevant data sets: the full
partial-report-plus-masking data set, the cue-after-noise sub-

." "set, and the whole-report data set. The capacities are five
S.. •N ltoletters for BL and seven letters (well above normal) for BF.

S selective The nonselective capacity estimate CN is effectively equal
to 3, the number of letters in one row for BL. It is about
5-10% less than 4 for BF, who was shown four-letter rows.

0 100 200 300 400 The time constants for selective and nonselective transfer,

Time in msec s and TN, are quite different from each other. Selective trans-
fer continues to rise steadily until after 200 ms, whereas

Figure 12. Panel a is a block diagram of the two-process aggre- nonselective transfer asymptotes quickly after 100 ms. Both
gate-row model of iconic transfer. (The first box indicates iconic subjects have similar time constants, although their capac-
memory with a capacity Cs decaying with time constant 1s after a ities differ.
brief stimulus presentation. The partial-report cue, after delay q,. For both subjects, the time Tq necessary to interpret the cue
causes a shift from an initial nonselective transfer [1N) to selective is estimated to be 0 or slightly negative.
transfer [i'sJ into durable storage. All transferred items are added in The speed of the transfer processes is determined by dif-
durable storage- its apparent capacity C, varies slightly depending ferentiating Equation 2. This results in
on whether it is determined from partial or from whole reports (see
Figure 91.) Panel b illustrates the computation in the two-process f'(t) C/T exp(-t/i). (7)
model. (Dotted curves show selective and nonselective transfer.
Before the cue, transfer is nonselective and proceeds at rate CNIiN For t = 0, Equation 7 reduces to
to asymptote CN. After the cue, transfer is selective at rate Cs/Ts to f'(0) = C/I. (8)
asymptote Ca. The arrows indicate that in effect, the generic se-
lective transfer curve is joined to the generic nonselective curve at
the moment in time that the cue takes effect.) Enigmas

when given within 100 ms of the stimulus onset. In the first Computation of the initial transfer rates immediately at

100 ms, the cumulative transfers Nc. r,(t) and S, ,,(t) differ stimulus onset. S'(0) and N'(0), shows that nonselective
only slightly. After 100 ms, N. m(t) reaches its asymptote, transfer has a much higher rate. Seventy and 45 letters/s are
whereas S, .(t) continues for at least another 300 ms. transferred nonselectively for subjects BF and BL, respec-

tively, and only 27 and 15 are transferred selectively. Note

Parameter Estimations and Fits to the Data that the nonselective transfer rates are based on the total
number of letters transferred into durable storage, not merely

The curves in Figure 7 show the fit of the complete model on the letters in the cued row. In the aggregate model, it is
to the data of both subjects. The model accounts for 96% and not obvious why the actual speed of nonselective and se-
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Figure 13. Data from a partial-report experiment without masks. (The open symbols show the
proportion correct for various cue delays. The solid line shows the predictions of the two-process
aggregate-row model. The dashed curve indicates the estimated component of performance resulting
from nonselective transfer. The distance from the dashed line to the solid line (partial-report
accuracy) represents the estimated contribution of the selective transfer process.)

lective transfer should appear to differ by so much; this issue by Reeves and Sperling (1986) using visual cues showed that
is addressed in the row-by-row model, presented later. a spatial shift of visual attention took 300-400 ms. Sperling

It also is surprising that the estimated time the subject and Weichselgartner (in press) used a click in a go/no-go
needs to interpret the cue rq is essentially zero. Experiments attention shift experiment that required only turning on at-

tention, not actually shifting it in space. They found a modal

Table 2 switching time of about 100 ms. Our tonal cues, which re-

Best Fitting Parameter Values for the Aggregate-Row quired a three-choice reaction and a spatial shift of attention,
Bel Fi(inPartialmReport WithMaleskin) ad fr A atao would certainly be expected to have a much longer attentionSubsets (Tat Yield Estimates of Pure Selective and shift latency. These enigmas suggest the need for more coin-
Pure Nonselective Transfer in Experiment 2 plex analysis, which we provide in the next section by an-

EprieNoneetie Transfer in EprimeN t 2 IS ealyzing the data separately for each row.
Experiment Cs CM i~s vN t• rs error

Subject BF
Selective 3.58 - 130.0 - - 0.073 Position Effects
Nonselective - 7.08 - 99.9 -16.62 0.021
Combination - - - - - 0.023 Partial-Report Accuracy by Row, Cue Delay,
Overall 3.82 7.35 191.1 114.31 -12.5 0.095
Partial report - - - - - 0.049 and Mask Onset 7une
Whole report - 6.3 - - - -

S c BThe probability of correct partial reports as a function of
Subject BL mask delay with cue delay as a parameter is displayed in

Selective - 158.9 08.47 .120 Figure 14. Each panel shows data for a different row of the
Combination 4.7 - - 0.2 0.016 display. Partial reports of the middle row differ from reports

Overall 2.98 5.0 197.5 110.4 -13.6 0.089 of the top and bottom rows, and we consider the middle row
Partial report - - - - - 0.016 first. Almost always, subjects report the middle row perfect-
Whole report - 5.0 - - - - ly. Even in the hardest conditions (short mask delay and long

Note. C. and CN represent attentional capacities, respectively, of cue delay) subjects report 80% of the middle-row letters cor-
selective and nonselective transfer, with units in letters; r, and % rectly. Except for the earliest mask at 100 ms, all the other
represent time constants of selective and nonselective transfer, middle-row curves appear equal at a performance level of
with units in milliseconds: rms is root mean square. Selective and about 95% correct. There is no apparent iconic decay for the
nonselective experiments the parameters were estimated from sub- middle row. Obviously, the transfer to durable storage of
sets of the data that did not require using the additive combination letters from the middle row is nonselective, and in this the
rule. In the combination experiment, the combination rule that middle row differs from the other rows.
estimated only additivity, not any of the parameters, was listed. In For the top and bottom rows, performance decreases from
the overall experiment, the complete model for Experiment 2 was
tested. In the partial-report procedure, the partial-report-plus-mask near perfect in easy conditions to near chance in the hardest
parameters were used to predict the data from an earlier partial- conditions. Because nonselective transfer determines the as-
report-without-mask experimenL The whole-report experiment en ymptotic performance at long cue delays, the data for the top
tailed simply observation of subjects' performance. No parameters and bottom rows indicate there is much less nonselective
were estimated. A dash indicates that a parameter could not be transfer (and correspondingly more selective transfer) from
estimated for a particular condition. these rows than from the middle row.
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Figure 14. Accuracy of partial reports as a function of mask delay, with cue delay as a parame-
ter, shown separately for each of the three stimulus rows. (Cue delays are in milliseconds: Filled
circle = 0, open circle = 100. filled square =200. open square =300, triangle =400. Top, Mid-
dle, and Bottom denote the stimulus rows. 8L and BF denote the subjects. Each data point repre-
sents the proportion correct in 50-100 trials. Note the large and highly significant performance
differences between the rows. The curves are predictions of the nine-parameter attentional model
(Equations 12-14], with parameters given in Table 3.)

Selective and Nonselective Transfer by Row subjects' performances were perfect or nearly so. This is
"not the-case, however. Of the trials on which the cue indi-

"cated a report of the top or bottom row, fewer than 2% of
To estimate the amount of nonselective transfer, we con- the reports had all letters correct (compared with 70% for

sider the subset of data with cue onset at or after mask onset the middle row). From this, we infer that subjects did not
(as in Figure 9). Figure 15 shows nonselective transfer for the switch between rows and that the consistent preference of
three rows. For both subjects, the middle row rises to a high the middle row in nonselective transfer is responsible for
asymptotic level within the first 100 ms. The other rows rise its higher nonselective transfer rate. Indeed, most of the
slowly and reach generally lower asymptotic levels, letters reported in the nonselective conditions come from

Nonselective transfer: Strategy mixture versus pure strat- the middle row.
egy. To account for the subjects' good performance on On the other hand, in the conditions that favor selective
the middle row in the nonselective transfer data. we con- transfer, the proportions with which the different rows are
trast two possibilities: a trial-to-trial variation of transfer sampled are nearly the same. This explains why the aggregate
strategy (which, over a series of trials, most often favors model yielded faster rates of letters actually entering durable
the middle row) and a consistent strategy that favors the storage for nonselective than for selective transfer: Nonse-
middle row on every trial. Suppose that, prior to the stim- lective transfer sampled mostly the fast middle row, whereas
ulus exposure on each trial, subjects preselected a particu- selective transfer provided an almost equal mixture of all
lar row to transfer nonselectively immediately following three rows.
the exposure. Suppose that from trial to trial, they switched Selective transfer Figure 16 shows pure selective trans-
their preferred rows, but on the average, they most often fer estimated (as in Figure 10) from trials on which
chose the middle row. In this strategy, we would expect to the cue occurred simultaneously with the onset of the
find some trials for the top and bottom row on which the test flash. For the middle row, selective transfer yields the

lU~llUi ima Ii il~l001111=u111I
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Figure 15. Pure nonselective transfer as a function of mask delay for each of three stimulus rows
and 2 subjects. (The data points are the proportion of correct partial reports on trials in which the
cue occurred at or after mask onset [Figure 6b]. Circles indicate the top row, triangles indicate the
middle row, and squares indicate the bottom row. The solid curves are predictions of the nine-
parameter attentional model [Equation 12], with parameters given in Table 3.)

same apparent growth curve as nonselective transfer. Note lective transfer by subtracting out the nonselective transfer
that, for both subjects, selective transfer for the top and bot- can be applied to the row data to obtain the selective transfer
tom row reaches almost perfect performance at the longest for each individual row. The results are shown in Figure 17.
mask delays. This indicates that the information in the stim- We keep parallelism as a working hypothesis because it ac-
ulus is still available at these long delays. Therefore, it is also counts for 99% of the variance of the data for both subjects.
available for nonselective transfer. The finding that nonse- Manifestations in the data of attention to a stimulus row.
lective transfer reaches asymptote at a lower level for the top We assume that partial attention to a row slightly improves
and bottom rows must then be a consequence of a capacity selective transfer of letters from that row relative to nonse-
limitation. There is a suggestion in the data that the cumu- lective transfer and that complete attention to a row maxi-
lative selective transfer from the top and the bottom rows is mally facilitates selective transfer. Consider a graph of pro-
an S-shaped function of time. This would mean that the portion correct versus mask delay with cue delay as the
transfer rate was slow in the beginning, reached a maximum parameter (Figure 14). The earliest mask delay at which data
value at intermediate times, and finally declined again to from two cue delays, cl and c 2 diverge indicates the point at
zero. A slow start suggests a delayed shift of attention; the which the states of attention induced by cl and c 2 are suf-
slow final rate almost certainly indicates that the iconic im- ficiently different to affect selective transfer. For example,
age has decayed to illegibility, consider cues that indicate the bottom row, and suppose

The additivity assumption of Equation 1 that yielded se- cl = 0 and c 2 = 100 ms. In Figure 14, the data for cl = 0

1.0 112 1.0 A9

1.00

0.5 oTToM 0.5
a 3

0.0 0 0.0 0•0
0 100 200 300 400 500 0 100 200 300 400 500

Mask Delay in msec Mask Delay in msec

Figure 16. Pure selective transfer as a function of mask delay for each of three stimulus rows and
2 subjects. (Data points are the proportion of correct partial reports on trials in which the cue
occurred at stimulus onset [Figure 6c). Circles indicate the top row. triangles indicate the middle
row. and squares indicate the bottom row. The solid curves are predictions of the nine-parameter
attentional model [Equation 13], with parameters given in Table 3.)



ICONIC MEMORY 859

1.0 12 1.0

4F

00
1.0 .2 1.0 9

050

oCs k La iddle M.5 D Midd m e
• •q4 3

Cdata as iue14acrc o mf priareotsasý a futo n ofms4dly-it6u elya

OF OL I,•

s Bottom 6

• 3

OLO 0 - -- 1,0 0.0 A 0
0 100 200 300 400 300 0 100 M0 • 0 •

Mask Delay in nosec Mask Delay in msec

Figure 17. Selective transfer after prior nonselective transfer. (The curves are based on the same
data as Figure 14--accuracy of partial reports as a function of mask delay, with cue delay as a
parameter. Cue delays are in milliseconds: Filled circle = 0. open circle = 100, filled square = 200,
open square = 300, triangle = 400. The estimated amount of nonselective transfer has been
subtracted [as in Figure 11] to yield the residual selective transfer. The symbols show estimated
values of residual selective transfer after various cue delays.)

first break away from the data for other cs when m = 100, ditions represented in the parallel curve sections. In other
and the c1 = 0 data are completely separate when m = 200. words, not only does attention switch quickly once the cue
A mask occurring 100 ms after c1 means there is no further arrives, but it switches completely. If it did not switch all at
transfer from the stimulus after 100 ms. For the data obtained once, then an early cue, cl, would have produced a greater
with cl in this condition to differ from the other c, implies attentional shift to the indicated row at a subsequent time, t2
that the cue must have acted to alter attention within 100 ins. than a cue, c2, that did not occur until t2 . In that case, transfer
Alternatively, we would have to reject our previous assump- measured at t2 would be faster for c I than for c 2, and the
tion that the mask terminates stimulus availability, parallelism in the data of Figure 17 would be violated. Be-

Figure 14 shows that, for the middle row, there is no clear cause the data are effectively parallel, we also have to assume'
divergence of data for different cue delays and therefore no that within the context of our assumptions, attention shifts
evidence that attention does or does not affect transfer of the quickly and completely. These assumptions are formalized in
middle row. However, transfer from the top and bottom rows the next section.
is obviously quite affected by attention. The data for cue
delay c in Figure 14 tends to break upward from the pack of
longer cue delays as soon as m k c. This indicates that our Attentional Model of Transfer From Iconic Memory
cues induce a measurable change in attentional state imme- to Durable Storage
diately after their occurrence.

The other aspect of the performance-versus-mask-delay Assumptions
data (Figure 14) that we have already dwelt on at length is
the parallelism of the curves for different cue delays onward To account for the analysis of partial-report-plus-masking
from the moment m a c (Figure 17). Parallelism indicates that data separately by rows, we generalize the aggregate model
the state of selective attention is the same for all the con- of Figure 12a in a natural way, as illustrated in Figure 18. In
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p given by inserting a term (tiT)6-- to the time-dependent trans-
fer of Equation 7, resulting in the time-and-row-dependentI Cs transfer

f'(t, a,) = CQ 7r)" - ' cxp( - dT). (9)
CN . The constant C, is a capacity allocated to row r.

CE.2 Cs We assume that the differences between nonselective andLI CN3 selective attention are completely captured by the spatial al-
t . locations of attentional capacity C,. so that one set of row-

4 jH dependent weights, a,. suffices for all states of attention.
SCue Because the a, depends on spatial location (the row) and does

tue Cs not depend on attention, it represents the intrinsic processing
Stimulus efficiency of a retinal location.

We wish to test our assumption that a single parameter
Figure 18. Illustration of the attentional model of iconic memory suffices to describe the overall transfer rate of both selec-
transfer processes. (As in the aggregate-row model, before the cue, tive and nonselective attention. Therefore. in parameter es-
the initial state of attention determines nonselective transfer from timationselestimatentwo overefore parameter es-iconc m moryto duablestoe. C .,, CN., ~ ~ N.. ~timation, we estimate two overall rate parameters, one foriconic memory to a durable store. CN. I CNK 2. an CN. 3. respec-
tively, indicate the relative amounts of attention allocated to the selective and one for nonselective attention, to determine
top, middle, and bottom rows before the cue. The row-dependent whether these unconstrained rate estimates indeed are
retinotopic component of iconic transfer rate is illustrated by the p, similar.
functions, which begin with stimulus onset. In response to a cue to
report Row r, subjects shift attention instantaneously from its
initial state to one of the three postcue states indicated by Cs. The Computational Model
actual transfer rate is the product of CN. ,P,(t) before the cue and
CsP,(t) afterward.) Following Reeves and Sperling's (1986) attentional gating

model, it is reasonable to assume that the transfer rate from
the aggregate-row model, nonselective transfer and selective a location, r, is determined by the product of two factors: (a)
transfer were each characterized by a two parameters, their the availability (legibility) of stimulus information at r and
rate and the total capacity. Now these processes are made (b) the amount of attention allocated to r. Availability at a
more explicit in terms of the states of attention they represent. location is determined by iconic buildup and decay, and it is
Each state of visual attention is characterized by a spatial parameterized by exponent, a, of Equation 9 combined with
function that represents the allocation of attentional re- the exponential terms. Attentional allocation is parameter-
sources over space (Sperling & Weichselgartner, 1991) and ized by the capacity allocation, C,. Equation 9 represents this
a separable temporal function that represents the time period product. Unfortunately, transfer mode appears implicitly in
during which the spatial function reigns. Thus, nonselective the time constant, u, of Equation 9. This means that attention
transfer represents the default state of attention that exists allocation (which determines transfer mode) would be in-
from the beginning of the trial until the cue is received and extricably intertwined with iconic availability if rN and rs
interpreted. The spatial allocation of nonselective attention were to differ appreciably.
is described by three numbers (CN., r = 1.... 3) ta rep- Cumulative transfer in an interval (0, ml is given by in-
resent the capacity (in letters) of durable storage allocated to tegrating over Equation 9. For simplicity, we change the vari-
the top, middle, and bottom rows of the display. The single able of integration, giving
number of the aggregate-row model that described the ca- W1

pacity of durable storage for nonselectively transferred let- S,(m) - Ci(t)- -' exp( - t) dt. (10)
ters was CN = L, C.,. o

After the cue is received and interpreted, one of three statesof sleciveattntin ocur. Eah sateis harcteize by By appropriately normalizing the exponential terms in Equa-
of selective attention occurs. Each state is characterized by tion 10, we can convert Equation 10 into an attentional ca-
C,, the capacity allocated to the cued row (top, middle, or
bottom) and by 0.0 capacity allocated to the other rows (Fig- pacity (C, scaled in letters) multiplied by the well-known
ure 18). incomplete gamma function, P(a, x), 0 • P(a, x) < 1:

In the aggregate-row model, the two speeds of transfer P0 (t)' 'exp( -t) dt
from iconic memory to durable storage (nonselective and P(a, x) = * (t)"_exp( - t)dt
selective) were parameterized by their own time constants,
Ts and 'TN in Equation 7. In considering rows individually, it In subsequent use, x will take four values: C/TrN, CITs, m/IT,
is obvious that all transfers are much quicker from the middle and m/Ts, representing the intervals from exposure onset
row and that three parameters, a,, r = I .... 3, are needed to the cue and the mask, respectively, in units of the time
to characterize the temporal differences between transfer constants of nonselective (TN) and selective (Urs) transfer.
rates from the three different rows. The exact temporal wave- For a = I, Equation 9 simply reduces to Equation 7. Values
forms cannot be determined directly from our data. A math- of a between 0 and I lead to an accelerated expo-
ematically tractable formulation that has useful properties is nential growth function for P(a, x). Values higher than
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I lead to S-shaped delayed growth. nonselective and selectively transferred letters from r. It gen-
Equation 9 plays the same role in the row-by-row model eralizes Equation I of the aggregate model:

as Equation 7 did in the aggregate-row model. It can be + (N+)
interpreted as representing the time course of the iconic im- L . = - + S. . (14)
age at each row location weighted by attentional allocation.
To help the reader's intuition in following the exposition of Parameter Estimates and Their Interpretation
the computational model, we show the iconic time course
functions for three rows in Figure 18. The instantaneous Best fitting parameters were estimated for Equations
transfer rate, p,(t) = t'" e-', is the derivative of the cumu- 12-14 by means of an optimization program (PRAXIS; see
lative transfer, P(a, x), given in Equation 11. As Figure 18 Brent, 1973; Gegenfurtner, 1992). using the partial-report-
indicates, the rise time for the middle row is too fast to be plus-masking data of Experiment 2. The results of parameter
observed in our experimental conditions; however, the mid- estimation are summarized in Figure 14 and Table 3. The
die row decays with what appears to be a familiar, mono- model's predictions correlate very well with the data: r2 =
tonically decreasing function. The top and bottom rows rise .98 and .95 for the 2 subjects. The predicted average selective
before they decay. We defer to later the question of whether and nonselective transfer for the three rows is almost iden-
these top- and bottom-row functions truly represent the rise tical to the predictions of the aggregate-row model (see Fig-
and decay of iconic memory. (Alternatively, they might rep- ures 9 and 10). Therefore the row-by-row model (without
resent a property of a model in which the absence of inde- additional parameters) also predicts the data from the whole-
pendent measurements of attention insufficiently constrains report experiment and from the partial-report experiment
the partition of transfer rates into legibility and attentional without masks.
components.) The time constants T's for selective transfer and TN for

The following equations summarize the model. Equation nonselective, transfer are now both approximately 100 ms,
12 describes the cumulative nonselective transfer that takes indicating that each transfer process completes in about the
place from the onset of the stimulus until either a cue or a same time. However, the actual transfer rates CJr depend on
mask occurs. It is the product of terms representing two fac- the row capacity. The aggregate-row model's capacity for
tors: attentional allocation, C, and retinotopic/stimulus fac- nonselective transfer, CN, is now split up into the three CN. ,s.
tors, P: This set of rates defines the initial default attention state prior

to the cue. The high rate for the middle row indicates that the
N,~.,, = CN.,P(a,, c'/N), c' = min(c,min). (12) default attention state is primarily focused on the middle row.

The function P implies different transfer dynamics for each When a cue is received and interpreted, attention is shifted
of the three rows r. Relative to the middle row, transfer from to the cued row, and the transfer rate is determined by the
the top and middle rows is both delayed and slower. Because iconic legibility of that row, f'(t, a,) (Equation 9). In fact,
delay and slowness are perfectly correlated, both are cap- the selective capacity, Cs, is virtually the same as in the
tured by the parameter a,. aggregate-row model and nearly equal to the number of let-

There is a limit to the total number of letters that can be ters in the row. In effect, the model assumes that once at-
transferred from iconic to durable storage. How the subjects tention is shifted away from the center row to the top or
allocated space in durable storage to particular rows so as to bottom row, it is as effective at the top or bottom row as it
optimize their performance is a matter that we did not attempt was in the center, and any difference in performance must be
to control. Therefore, a parameter CN., is needed for each accounted for by differences in iconic legibility.
row to describe the maximum number of letters of durable Parallel versus serial process in nonselective transfer.
storage allotted to it (i.e., the default allocation of attention
prior to the cue). Finally, the overall rate of nonselective Table 3
transfer is determined by the time parameter TN.

Equation 13 describes selective transfer. In this formula- Best Fitting Parameter Values for the Model That
tion, selective transfer begins instantly at the onset of the cue Takes Differences Between Rows into Account
and ends instantly at the onset of the mask: Row Cs CN - N a

S,,,- C.s[P(a,. m/d") - P(a,, c/;s)], m > c. (13) Subject BF
Top 3.72 2.87 115 82 1.39

The cumulative transfer to durable storage depends on the Middle 3.72 3.21 115 82 0.38
integrated product of available information and attention Bottom 3.72 1.31 115 82 2.27
(Reeves & Sperling, 1986). Available information is repre- Subject BL
sented here by P(a, x), which, for the special case of T14 =
Ts depends only on elapsed time since onset of the stimulus. Middle 2.85 2.78 109 97 0.50
Attention is represented by the currently operative set of C, Bottom 2.85 1.59 109 97 1.97
capacity values. Attention depends only on elapsed time Note. Cs and CN represent attentional capacities, respectively, of
since the onset of the cue. Therefore, when TN = Ts, iconic selective and nonselective transfer, with units in letters; T. and r.
time course and attention are independent, represent time constants of selective and nonselective transfer.

Equation 14 expresses that the total number of letters trans- with units in milliseconds; a is a pure number (Equation 12) that
ferred to durable storage from each row r is the sum of the represents attentional dynamics.

I. . ...
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The a, parameters represent the dynamics of buildup point of view. The model accounts nicely for all the enig-
and decay of iconic legibility at the retinal locations r. mas that remained after the aggregate-row model and pro-
They represent the availability of information from a vides a framework for dealing with the few problems that
particular row regardless of whether it has been cued. In remain.
fact, some time after stimulus termination (100 ms for
Subject BF, 200 ms for Subject BL; see Figures 15 and
17) the slopes of the nonselective transfer functions for General Discussion
the top and bottom rows in Figure 15 are still as steep or
again become as steep as the initial slopes. This means that The present data show the critical importance of nonse-
after 100 or 200 ms, the availability of information from lective transfer in iconic memory experiments. By decom-
these rows is as well as or better than it is immediately after posing performance into selective and nonselective transfer
stimulus termination, and subtracting nonselective transfer from the total transfer.

One interpretation of the delayed availability of informa- we were able to isolate the selective component that depends
tion from the top and bottom rows in nonselective transfer on the stimulus decay and attentional shifts. This isolation of
is that iconic legibility builds up slowly but approximately the two transfer processes was made possible by using a
simultaneously in these noncentral rows. An alternative ex- completely crossed design of cue delay and mask delay. This
planation is based on serial processes. Prior to a cue, subjects crossed design differs from previous investigations withpreprogram their attention to move away from fixation at poststimulus masks (e.g., Averbach & Coriell. 1961; Irwin &

about the time they expect to have completed transfer of the Brown, 1987)r in which only one mask or cue delay was used
middle row to durable storage. Then they shift attention ran- or cue and mask delay were correlated.
domly to either the top or bottom row. This would result in With respect to theory, we consider the three previous

an apparent delay in the availability of information from the computational treaments of information transfer from
top and bottom rows. If subjects were indeed shifting atten- iconic memory to durable storage. The earliest model

tion on nonselective report trials, it would greatly complicate (Averbach & Coriell, 1961) is extremely simple because it
was developed for a more restricted paradigm. It proposes

the analysis of the attentive and iconic components of per- both a selective and a nonselective transfer process, but it
formance. The present data do not discriminate well between embodies an assumption about probabilistic independence
these alternatives. b hs w rcse hti togycnrdce

Attention and the iconic time course are inextricably between thew two processes that is strongly contadicted
b in our larger data set. Rumelhart's (1970) model is quitebound by multiplication in Equation 9: Only the product of similar to ours. It fails because it embodies an incorrect as-

attentional allocation and iconic availability determines per- sumption about subjects' strategies and another about
formance. The model is a powerful computational device, but memory capacity limits. These two models, and ours, share
without an independent verification of the attentional state the common theme -of two transfer processes. The third
(or iconic availability), it is not a sufficiently precise tool to model (Loftns et al., 1985) derives iconic decay properties
dissect unambiguously the attentional and iconic compo- from a single nonselective transfer process. With respect to
nents of performance. nonselective transfer and iconic decay, there is consider-

A comparison of the estimated values of al and a3 in Table able agreement between Loftus et al.'s theory and ours, al-
3 shows that the 2 subjects' iconic time courses are different though their theor is not intended to confront the two
in the top and bottom rows, with BF favoring the top row and transfer process issues that are our prmary concern. In the
BL the bottom row. Because these effects occur in both non- next three sections, we consider these models in more de-
selective and selective attention, the model assigns them to tail. Then we briefly review noncomputational suggestions
the iconic time course. However, a more plausible interpre- about iconic transfer processes.
tation would suggest that they represent tendencies, or biases,
to shift attention up or down. According to this interpretation,
in response to a cue, BF shifts his attention faster to the top Probabilistic Independence of Nonselective
row than the bottom row, and for BL it is just the reverse, and Selective Transfer
These biases in selective transfer mirror the subjects' bias in
nonselective transfer. Averbach and Coriell (1961) did a partial-report experi-

Although the model assumes that nonselective transfer ment in which the stimulus was two rows of 8 letters and
reflects a single initial attentional state, closer examination the required partial report was a single letter. A *isual cue
of the data suggests that subjects first transfer letters from ("bar marker") appeared above or below the rcc1 red let-
the middle row and then fill up the remainder of durable ter. Total transfer was determined in a partial-i.+%ort exper-
storage using nonselective transfer from the other rows. iment with a cue to report I of 16 possible letters. Nonse-
That is, even nonselective transfer ultimately may have to lective transfer was estimated from report accuracy when
be modeled as consisting of two or more attentional states, the cued letter was masked with a concentric annulus. Se-
an initial state of attention to the middle row, followed by lective transfer was estimated by correcting total transfer
attention to either the top or bottom row. Although this for the nonselective component. Because Averbach and
precision of description is necessary for the accurate parti- Coriell's annulus was an effective letter masker only when
tion of the components of performance (iconic decay, at- the annulus occurred after a letter, and not when it oc-
tention), it is not necessary from a purely computational curred simultaneously, they ignored the data of the initial



ICONIC MEMORY 863

parts of their masking curves. However, their experimental no clear pattern emerges of how selective transfer is deter-
results are generally similar to ours, even though the ex- mined. Their model cannot account for our data.
perimental conditions are quite different. Overall, perfor- The consistency of the different independent estimates of
mance was higher for our subjects. the iconic decay function demonstrates the value of our Cue

Averbach and Coriell (1961) proposed the following Delay X Masking Delay crossed design. which enables us
combination rule. Their basic unit of analysis was a single not only to estimate the parameters for our model, but also
letter, which could be transferred either selectively or non- to check our model's consistency.
selectively. They regarded the two transfer types as inde-
pendent processes. Both transfers contribute probabilisti-
cally to the proportion of correctly reported letters, much Diffuse Transfer Followed by Focused Transfer
as in Rumelhar's (1970) model. Averbach and Coriell
found huge performance differences for different letter Po- rumeport (7propos a matem atical meltof
sitions but decided to ignore them and average their data. partial-report experiments cast in terms of features. Features
Moreover, they did not vary mask and cue delays indepen- were transferred with replacement from retinal locations and
dently, so they were severely limited in what they were aggregated to form letters. During the stimulus exposure,
able to do with their data and theory. For example, they features were equally available at all locations and all times.
were noncommittal about whether nonselective transfer After termination of the exposure, feature availability was
ends when the cue occurs, about whether selective transfer assumed to decay exponentially. The feature extraction rate
begins immediately upon cut onset, and about other issues was assumed to have an absolute limit (capacity). Before a

related to the underlying processes. cue was received, the overall feature extraction capacity was
Averbach and Corielrs (1961) model is analyzed as fol- spread equally over all locations. Immediately after a cue waslows. Each letter has a certain probability of being transferred received, feature extraction capacity was concentrated en-by either process. Denote the event of a nonselective transfer tirely on the cued locations.with N, the event of a selective transfer with S, and the event The essential ideas of Rumelhart's (1970) model are quiteof any kind of transfer with T: similar to those of our model, namely, that there is a defaultprecue attentional state followed by a postcue attentional

P(T) = P(N) + (I - P(N))P(S). (15) state and that the same transfer process operates in both states
(merely the row allocations are different). However, Rumel-

It then follows that selective transfer is given by hart was unaware that the precue state is not diffusely spread
P(S) = (P(T) - P(N))I(1 - P(N)). (16) over all rows but is concentrated on the middle row. In ad-

dition, he had no explicit capacity limit for durable storage.Equation 16 expresses the idea that two processes contribute relying on limited stimulus availability to account for all
to partial-report accuracy, as does our Equation 2 (and its response limitations. This was obviously too restrictive an
subsequent elaborations) and Rumelhart's (1970) model (dis- assumption.
cussed shortly). Rumelhart's (1970) representation of the probability of

Figure 19 compares the rates of selective transfer (i.e., the correct reports, P. as the indirect result of a feature extractionlegibility of the iconic image) as derived from the present process would allow the P versus time graphs either to grow
model and from Averach and Coriell's (1961) model. It like exponentially limited growth processes or to assume S
shows the number of letters selectively transferred during shapes. An S shape would result from the fact that before a
successive 100-ms intervals plotted as a function of the time threshold number of features is collected at a location, the
at the end of the interval. The data points in Figure 19a are probability of correctly reporting the letter at that location is
derived from Equation 2. Figure 11 shows cumulative assumed to be at chance. After the critical number of features
selective transfer; Figure 19 shows selective transfer rate, is collected, the probability of correct report is assumed to
that is, successive differences between the points of the lines be 1.0. Although there is considerable flexibility in the gen-
in Figure 11. That all these successive differences fall on the eration of S-shaped curves under the feature accumulation
same iconic decay function should be no surprise. We pre- assumption, and our empirical P versus t curves are, in a few
viously noted that all the curves of Figure 11 derive from a casei, S shaped, it seemed better not to burden our transfer
single generic selective transfer function. theory with such a complex assumption.

Figure 19b shows the predictions for Averbach and Co-
riell's (1961) formulation (assuming that nonselective trans-
fer stops after the occurrence of the cue). When the cue delay How Much Is an Icon Worth?
is zero, there is no nonselective transfer, and both our model
and theirs give the same predictions (indicated by the filled The nonselective transfer curves obtained in our experi-
circles). However, when nonselective and selective transfer ments appear very similar to the ones derived by Loftus et
are combined (i.e., for any cue delay greater than zero), the al. (1985) in a paradigm using pictorial stimuli. They mea-
models differ. As already pointed out in the discussion of sured the number of details subjects could report from briefly
Figure 11, our assumptions result in selective transfer rates exposed pictures. Exposure duration was varied, and a mask
that depend only on the time since the onset of the cue. followed stimulus presentation immediately after stimulus
Averbach and Coriell's model leads to large, highly irregular offset. In a second condition, presentation of the mask was
estimates of selective transfer for a given time interval, and delayed 300 ms. They found that a 300-ms mask delay after
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Figure 19. Derived iconic memory decay functions: Esdtimates of the rare of selective transfer at
a given time after onset of the 50-ms stimulus. (At each time t, selective transfer during the 100 ms
preceding t is estimated independently from each condition, with cue delay less than t. [This requires
extraction of the selective transfer component from total transfer whenever cue delays are greater
than 0.] Symbols indicateicue delays in milliseconds: Filled circle =0 , open circle - 100, filled
square = 200, open square - 300.,'iangle - 400. Data are shown for Subjects BF [left] and BL
[right]. Panel a shows estimates of selective transfer derived from our model (Equation 5). Data
points are the differences between successive points on each of the lines of Figure 11. Insofar as the
different estimates all fall on the silne iconic decay function, it substantiates our model of iconic
decay. Panel b shows estimates of selectve tnsfer derived from Averbach and Conell's 119611
model [Equation 161 applied to our data. The wide variation [at a given time] of the different
estmates for selective transfer indicates that this model does not yield a consistent description of
iconic decay.)

the termination of a stimulus exposure led to the same levels from whole reports. The main difference is that we present
of performance as an additional 100-ms stimulus exposure. iconic decay directly in terms of a transfer rate; whereas they
They argued that an additional exposure of 100 ms is equiv- presented it in terms of the fraction of the transfer rate of a
alent to an icon that is available for 300 ms. In this and continued stimulus exposure. Furthermore, in their proce-
subsequent experiments (Loftus, Duncan, & Gehrig, 1992; dures, it apparently was not necessary to discriminate the
Loftus & Hogden. 1988), with various stimulus materials and transfer raze at different retinal locations, which is critical in
tasks, they equilibrated iconic availability against an equiv- our analyses. Their derived iconic decay functions agree
alent continued exposum that yielded the same performance. quite well with those we derive for the middle row.
Ultimately, Loftus et al. (1992) derived an iconic decay func-
tion in terms of equivalent continuation of the stimulus. Their Position Effects
derived iconic decay functions were approximately, but not.
precisely, exponential. Differences in performance for different parts of the dis-

The assumptions underlying Loftus et al.'s (1992) and our play have long been observed (Averbach & Conell, 1961;
analyses are quite similar, although they derived all their data Holding, 1970; Sperling, 1960); but have not been taken into
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account in the estimation of the duration of iconic memory. random, but to report the (nonselectively) transferred letters
The differences we observe are mainly lower transfer rates even though they are known to be in the wrong row. To a
for the top and bottoms compared with the middle row. Al- subject, it seems better to report letters at least known to have
though in our formulation these locational factors are tied to been somewhere in the stimulus than to report random letters;
the stimulus, it is likely that they are based, at least in part, the reasoning perhaps being that the cue or the rows may have
on attentional factors. A relevant positional analysis was been misperceived. Therefore, in assessing location ernors, it
done by Holding (1970). He varied the probability with is critical to use additional measures to assess the nature of
which each row was cued and found that performance varied the errors. For example, Sperling and Dosher (1986) noted
accordingly, implicating attention. However, Holding's anal- that when items were reported with high confidence, location
ysis was insufficient to discriminate a change in precue non- errors were extremely rare and practically never extended
selective strategy from (postcue) difference in iconic decay. beyond an adjacent location. Irwin and Yeomans (1986) sup-
Furthermore, like many others (see Long, 1980), we strongly ported the notion of row juxtaposition. In their study, incor-
disagree with Holding's conclusion that this observation can rect letters mostly came from an incorrect row in the correct
explain partial-report superiority without postulating an in- column of the display.
termediate store.

When a rapidly moving spot is illuminated by stroboscopic Summary and Conclusion
flashes (temporally sampled motion), more than one spot
appears to move simultaneously. The number of apparently We experimentally identified two transfer processes, non-
visible spots is a measure of visible persistence, and this selective and selective, in the partial-report task. Our data
number varies with retinal location, persistence being longer provided strong evidence that performance in the partial-
for peripheral than for foveal stimuli (Farrell, Pavel, & Sper- report task is given by the algebraic sum of these two pro-
ling, 1990). Eventually, such spatial nonhomogeneities of the cesses. Experiment 1 showed that independent of cue delay,
visual system will have to be reflected in accounts of iconic subjects use only one strategy in a partial-report experiment.
decay. Experiment 2 showed that this strategy consists of nonse-

lectively transferring letters until the cue appears and after-
Strategy wards selectively transferring them.

The many complexities of these experiments are accu-

The results obtained in Experiment 1 seem to contradict rately described by a computational model that makes several
earlier results by Sperling (1960) that showed an influence plausible assumptions. Transfer rates are determined by the

of subjects' strategy. In Experiment 1. performance for a product of iconic legibility of the stimulus (which depends
given cue delay varied depending on which cue delays were on the elapsed time after stimulus exposure and on the retinal
given inprecedingriessions.dingcan wreholue dehays contra - location) and the subject's attentional state. Nonselectivegiven in preceding sessions. We can resolve this contradic- transfer is characterized by rapid transfer of the middle row

tion by looking at subjects' overall performance level. Our and much slower transfer of other rows. This precue atten-

subjects were well practiced. Under ideal conditions (no inal state i raneter in the computaio moel by

mask or cue delay), they achieved a performance level of tional state is parameterized in the computational model by
95-100% correct. Subjects in Sperling's study achieved 70- e precue capacity allocations weighted heavily toward the

95% correct under the same conditions. This suggests that middle row.
these early strategy effects were due to the use of nonoptimal Immediately after the cue, attention shifts to the cued row

strategies that would have been discarded after' additional of the display. Postcue capacity allocation is maximum for
the cued row and zero for the others. From this moment on,

practice. until the poststimulus mask ends all iconic transfer, selective
transfer occurs from the cued row. Nonselective transfer is

Other Models focused mainly on the middle row,.whereas selective transfer
focuses exclusively on the cued row, so that selective transfer

In recent studies, Irwin and Brown (1987) and Irwin and produces more correct items on the average-a higher ef-
Yeomans (1986) tested an alternative conception of iconic fective transfer rate. However, empirically determined rate
memory. Their theory also has two buffers, analogous to the constants (completion times) for nonselective and selective
iconic memory and short-term memory concepts of tradi- transfers are approximately the same ("r - 100 ms). sug-
tional theories. It assumes that the coding in iconic memory gesting that all transfers represent the same process and the
has two separate representations, one for identity and another different effective rates reflect different states of attention.
for spatial location. This distinction does not bear directly on different retinal locations, and different likelihoods that the
the distinction between nonselective and selective transfer, transferred items will be in the cued row.
but it is relevant to the general issue.
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We examine apparent motion carried by textural properties. The texture stimuli consist of a sequence
of grating patches of various spatial frequencies and amplitudes. Phases are randomized between
frames to insure that first-order motion mechanisms directly applied to stimulus luminance are not
systematically engaged. We use ambiguous apparent motion displays in which a heterogeneous motion
path defined by alternating patches of texture s (standard) and texture v (variable) competes with a
homogeneous motion path defined solely by patches of texture s. Our results support a one-dimensional
(single-channel) model of motion-from-texture in which motion strength is computed from a single
spatial transformation of the stimulus-an activity transformation. The value assigned to a point in
space-time by this activity transformation is directly proportional to the modulation amplitude of the
local texture and inversely proportional to local spatial frequency (within the range of spatial
frequencies examined). The activity transformation is modeled as the rectified output of a low-pass
spatial filter applied to stimulus contrast. Our data further suggest that the strength of texture-defined
motion between a patch of texture s and a patch of texture v is proportional to the product of the
activities of s and v. A strongly counterintuitive prediction of this model borne out in our data is that
motion between patches of different texture can be stronger than motion between patches of similar
texture (e.g. motion between patches of a low contrast, low frequency texture I and patches of high
contrast, high frequency texture h can be stronger than motion between patches of similar texture h).

Second-order motion Motion metamers Motion energy Motion correspondence

INTRODUCTION therefore called first-order motion extraction mechan-
isms (Cavanagh & Mather, 1989)

First-order motion extraction Psychophysical experiments (e.g. van Santen & Sper-
Drifting spatiotemporal modulations of various sorts of ling, 1984; Werkhoven, Snippe & Koenderink, 1990b)
optical stuff (such as luminance, contrast, texture, bin- have shown that motion perception of drifting modu-
ocular disparity, etc.) can induce vivid motion percepts; lations of luminance is well explained by a first-order
in each case "something" appears to move from one computation called motion energy extraction. Indeed.
place to another. This introspective description, how- most current models of first-order motion detection
ever, does not necessarily reflect the underlying processes (e.g. Reichardt detectors and gradient detectors) have
in human visual motion processing. now been shown to be equivalent or approximately

The study of visual motion extraction mechanisms has equivalent to some variant of motion energy extraction
traditionally focused on rigidly moving objects, project- (Adelson & Bergen, 1986; van Santen & Sperling, 1985).
ing drifting modulations of luminance. Several physio- A standard approach to first-order motion energy ex-
logically plausible computational models have been traction (e.g. Heeger, 1987; Adelson & Bergen, 1985)
proposed to extract motion information from drifting proposes that the visual system uses a battery of spatio-
luminance modulations. Examples are the gradient temporally oriented filters, each of which yields a real-
detector (see Moulden & Begg, 1986) and the Reichardt valued function of the visual field over time. The output
or correlator detector (see Reichardt, 1961). These of each filter is squared at each location in space to
detectors are designed to detect drifting luminance obtain a measure of local energy at the spatiotemporal
modulations (or their linear transformations) and are frequency to which that filter is tuned. The squared

outputs of these filters (motion energies) comprise the
"Departinent of Psychology and Center for Neural Science. New York input to a higher order process that computes a velocity

University, New York, NY 10003, U.S.A. flow field. For example, Heeger's (1987) model is built on
tPresent addres: Utrecht Biophysiac Rmearch Institute (UBI), Buys the observation that the Fourier transform of a rigidly

Ballot Laboratory, Utrecht University, Princetouplein 5. 3584 CC. translating pattern has all its energy contained in a plane
Utrecht. The Netherlands.

:,Premt address Department of PsycholoVy, Rutgers University, New through the origin in frequency space. Each motion
Brunswick. NJ 08903, U.S.A. energy detector (narrow-band, spatiotemporal linear
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filter followed by squaring) has its energy confined to a The preprocessing transformation T, can be either
Gaussian neighborhood of frequency space near the linear or nonlinear. Generalizing previous terminology,
origin. The velocity vector assigned a given point in we say that any system that employs linear preprocessing
space at a given time is obtained by (i) weighting the performs first-order motion extraction, whereas nonlin-
energy spectrum of each detector by that detector's ear preprocessing performs second-order motion extrac-
response, and (ii) finding the plane through the origin of tion (e.g. Cavanagn et al.. 1989; Chubb & Sperling,
frequency space that absorbs the greatest amount of this 1988).
locally measured motion energy. We refer to the transformations •'0 T, as motion

channels. T, is called the initial transformation and P, the
Second-order motion extraction motion extractor. S, is called the strength measure of the

Chubb and Sperling (1988, 1989a, b, 1991) demon- channel.
strated broad classes of drift-balanced and microbalanced Motion-energy detection 's motion -correspondence de-
stimuli that clearly appeared to move but for which even tection. Both first- and second-order motion channels
complete knowledge of the energy of all their Fourier can be further classified by the type of motion extraction
components would be useless in deciding whether their they use. A review of the literature on motion perception
motion was to the left or to the right (see also Cavanagh, shows that two types of motion extractor have been
Arguin & von Grdinau, 1989; Lelkens & Koenderink, considered and tested experimentally. We call these types
1984; Mather, 1991; Ramachandran, Rau& Vidyasagar, of motion extraction motion energy extraction and
1973; Turano & Pantle, 1989; Victor & Conte, 1990). motion correspondence extraction.
Thus first-order motion energy extraction fails com- Motion energy extraction computes the directional
pletely to account for the perception of motion in energy of a Fourier representation of the drifting modu-
drift-balanced stimuli. Such stimuli are said to elicit lation signal, that is, the relative energy of "drifting"
second-order motion perception (Cavanagh & Mather, spectral components. Within the constraints set by fre-
1989; Chubb & Sperling, 1988). In second-order motion quency resolution, energy extraction is independent of
stimuli, what drifts is not a luminance modulation but the relative phase of the different spatial Fourier com-
modulation of contrast, or spatial frequency, texture ponents of the modulation signal (van Santen & Sper-
type, flicker, or some other stimulus property. ling, 1984). In this respect, motion energy extraction

Stages. Let L be the spatiotemporal luminance func- computations are largely insensitive to similarities be-
lion defining a stimulus. The luminance at point (x, y) tween items in a motion path. The first-order motion
at time t is then denoted L(x,y, t). In our analysis, we analysis models noted above (Reichardt, 1961; Adelson
discriminate three stages for the extraction of motion & Bergen, 1985; Marx & Ullman, 1981) all share this
information from L: preprocessing; flow field extraction; property.
and decision. Traditionally, however, psychophysicists have inter-

First, a preprocessing stage in which one or more preted results of a wide range of motion experiments in
transformations T7 are applied to L yielding a set of terms of correspondence extraction. The metaphor of
real-valued, time-varying, "neural images" T,(L) (Rob- correspondence extraction describes motion as the con-
son. 1980). The value at point (x, y) at time t that results vection of some invariant aspects of spatial structure
from applying T, to L is thus denoted T7(L)(xy, t). over time. Thus, motion correspondence extraction de-
Usually, we think of i as referring to the dominant pends on similarity of local features. The more nearly
spatial frequency of a transformation-its scale. similar are two adjacent features that are separated by

Second, each time-varying, neural image 7;(L) is the an interval in time, the greater will be the strength of
input to a motion-analysis stage P, whose output is a motion between them.
(time-varying) velocity flow field fl, 0 T,(L) = ,'[Tj(L)J. The distinction between motion energy extraction and
For any point (x, y) in the visual field and every time motion correspondence extraction can be summarized as
r, the value fl, 0 T,(L)(x, y, t) is a two-dimensional follows: let a and P be two points separated by a brief
vector that indicates estimated pattern velocity of the interval in space and time, and let v. and vo be the
transformed image 7T(L) in the neighborhood of stimulus intensities at a and P. Then motion energy
(x, y) at time t. The scale of P, corresponds to Ti. extraction yields a motion strength that is a monotoni-
Associated with Pi 0 Ti(L) is a real-valued function cally increasing function of the product v,,v. Motion
S,(L) that gauges the reliability or strength of the correspondence extraction yields a motion strength be-
velocity estimate provided by ', 0 T,(L). For instance, tween a and f that is a decreasing, nonnegative function
the velocity estimate obtained at point (x, y) and time t of Iv, - vol.
may have been computed from sparse or noisy data. Typically, motion channels using correspondence ex-
In this case, irrespective of estimated direction or speed, traction yield higher motion strengths between similar
the strength S,(L)(x,y, t) of. the estimated velocity textures than between dissimilar textures. In particular.
Pi, 0 T,(L)(x, y, t) may be low. a motion channel using a correspondence extractor can

Finally, all the velocity flow fields fl, 0 T,(L) and never yield motion strength between a patch of optical
their associated strength maps S1(L) feed into a decision stuff A and a patch of different stuff B that is greater
mechanism; its output determines the direction of appar- than the motion strength between two patches of stuff A.
ent motion in ambiguous displays. This can easily happen, however, for motion channels
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using energy extractors. Suppose, for instance, that could be easily explained in terms of a texture grabber

VA > V1 , for v'A and v1 the respective values assigned stuff that used fullwave rectification (e.g. absolute value,
A and stuff B by a channel's initial transformation. square, etc.). However, the motion of these stimuli was

Then, motion energy extraction yields greater strength of inaccessible to any mechanism whose texture grabber
motion between a patch of A and a patch of B (rAL's) used halfwave rectification (nonzero output only for
than between two patches of B (i'srs). positive or only for negative inputs). These results

suggest that at least some of the texture grabbers
Motion -from -texture used in second-order motion perception use fullwave

The purpose of this paper is to characterize the rectification. It remains to be seen whether there are
mechaitism of second-order motion perception in the second-order motion mechanisms that use halfwave
subclass of drift-balanced stimuli for which motion is rectification. In the present context, however, we do not

defined by a modulation of spatial texture properties. To distinguish between different kinds of rectification. The

reiterate, it is not produced by a moving texture patch- essential nonlinear characteristic of texture extraction

that would be rigid, luminance-defined motion. Texture- processes has also been recognized by Bergen and Adel-
defined motion is most conveniently produced by a son (1988) and Caelli (1985).
moving patch that is filled with a particular type of The linear filter used by a texture grabber is presumed
texture in which each successive frame represents a new, to be realized in the visual system by an array of linear
uncorrelated instance of that texture type (Chubb & neurons, all with the same receptive field profile, dis-
Sperling, 1989a. 1991). As is true for all drift-balanced tributed across the visual field. The texture grabber
motion stimuli, an intriguing aspect of texture-defined output results from applying some fixed, rectifying non-
motion perception is that (unlike perception of lumi- linearity (e.g. the absolute value or the square) to the
nance defined or first-order motion) it cannot be ex- output of each of these linear neurons. It is assumed that
plained by Fourier energy or autocorrelational motion the spatial filter of Stage 1 operates on stimulus contrast
analysis (standard motion analysis). (see Model), rather than on luminance, but this assump-

An early example of texture-defined motion was re- tion is not critical to our arguments. The output of a
ported by Ramachandran et al. (1973). Detailed studies linear filter may be positive or negative depending on the
and analysis were recently presented by Chubb and local phase of the sensed texture. Thus the expectation
Sperling (1988, 1989a, b, 1991), Cavanagh et aL. (1989), of the output of such a filter is zero over the phase-
Mather (1991), Turano and Pantie (1989), and Victor randomized texture patches from which our stimuli are
and Conte (1989). constructed. The purpose of rectification is to produce a

We construct stimuli for which energy and correspon- positive average output across the texture so that a
dence mechanisms yield different predictions for the texture grabber registers the presence or absence of
strength of texture-defined motion (Werkhoven et al., texture, independent of local phase. Indeed, that is why
1990b). The resulting data demonstrate that texture- the Stage-I transformation (linear spatiotemporal filter
defined motion is computed by an energy mechanism, followed by rectification) i*s called a texture grabber.
and not a correspondence mechanism. And we will show Activity. The output of a texture grabber in response
how psychophysical data can be used to discriminate to a particular texture is called activity.
between these two sorts of mechanisms in human percep- Motion energy -channels. Together, a texture grabber
tion of texture-defined motion. More importantly, these followed by motion energy extraction form one (texture-
data indicate clearly that, for the class of textures we use defined motion) energy channel.
(similarly oriented patches of random-phased sinusoidal Motion correspondence-channels. Together, a texture
grating with different spatial frequencies and contrasts), grabber followed by motion correspondence extraction
texture-defined motion perception can be modeled in form one (texture-defined motion) correspondence
terms of a single motion energy channel, channel.

Energy channels Previous research in texture-defined motion

Texture grabbers. Chubb and Sperling (1989a, 1991) Historically, motion correspondence has been investi-
suggested a two-stage mechanism for extracting texture- gated with ambiguous motion displays in which motion
defined motion. Under their model, texture-defined is perceived as occurring along one or the other of
motion is computed by motion energy channels whose several competing paths. Most studies have dealt with
initial transformations are called texture grabbers. As stimuli that stimulated the first-order motion system
discussed below (see Rectification), a texture grabber is (e.g. Burt & Sperling, 1981; Kolers, 1972; Navon, 1976;
a linear spatial filter followed by rectification. In Stage Papathomas, Gorea & Julesz, 1991; Shechter, Hochstein
2, the time-varying output (acti,- v) from each texture & Hillman, 1989; Ullman, 1980; Werkhoven, Snippe &
grabber is subjected to motion energy extraction. Koenderink, 1990a; Werkhoven et al., 1990b) and these

Rectfication. By rectification we mean any function data are adequately explained by the first-order motion
that is zero for an input of zero, and is monotonically energy extraction models.
increasing for both positive and for negative real inputs. We consider here two recent studies that a,.,mpt to

Previously, Chubb and Sperling (1989b) demonstrated deal with motion correspondence in texture-defined
stimuli displaying systematic second-order motion that motion stimuli. These studies illustrate the difficult
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methodological issues that arise in attempting to deter-
mine motion correspondence, and thereby they indicate
the necessity of the more complex paradigm which fi
we use. A

Watson's crossed-phi procedure. Watson (1986) at-
tempted to measure the spatial frequency specificity of BA'..
the perceptual mechanism responsible for texture-

defined motion. He used a "crossed phi" method, in f2

which two adjacent texture patches (A and B) in frame A
I exchanged positions in frame 2. The patches were ..

Gaussian-windowed sine waves (Gabor patches). Ob- ........ ( -'( •server reliably perceived apparent motion between the f3locations when A and B were different spatial frequen-
cies. No apparent motion was reported when the patches ,

were of similar spatial frequencies. Watson interpreted
his results in terms of a model in which motion estimates B AB'
are computed separately within different spatial fre- f4 A A
quency bands. He used the increasing probability of B
apparent motion with increasing differences in spatial

frequency to estimate the spatial frequency selectivity of FIGURE I. Green's stimulus, L One temporal period of I consists o

the motion channels. Furthermore, it was implicitly four frames. Each of these frames is comprised ofa circle of alternating
patches of two types of texture, texture A and texture B. From frame

assumed that such a model was equivalent to a corre- to frame, these patches or texture take rotary steps clockwise around
spondence computation. the circle. This rotary clockwise motion is equivalent to left-to-right

In our view, the ambiguous "crossed-phi" paradigm motion in an analogous horizontal display, as indicated by the dotted

admits a simple alternative interpretation in terms of lines connecting annular frames to horizontal frames.

single energy channel model. Suppose there were just a
single energy channel, and suppose that texture A hap- any patch containing texture A is CA and whose average
pened to produce a bigger response from the texture value over any patch containing texture B is ra.
grabber in this channel than texture B. Then, the change Although there will certainly be variability to the T-out-
in position of patch A would produce a strong motion given texture patch, this intra-patch vari-response in this channel; the change of pston f patch put within a gvntxuepth hsitapthvn

oposition ability is not critical to the global motion percept elicited
B would produce a weak motion response in the oppo- by L What determines this global motion percept are the
site direction; net movement would be perceived in the average T-output values, VA and vg, of patches of the two
A direction. The critical observation for a multichannel textures A and B.
model is motion transparency-that motion of the A As many authors have observed (e.g. Adelson &
and B patches be seen simultaneously in opposite direc- Bergen, 1985; van Santen & Sperling, 1985), motion
tions. Only then can we be sure that more than one detection can be viewed as the detection of orientation
channel is activated. In fact, such motion transparency in space-time. As is clear from inspection of Fig. l(a),
was not reported by Watson, and, in our experience, it

any motion detection mechanism that adheres to this
does not occur in such stimuli. Thus, Watson's exper- general principle is bound to register clockwise motion
iment does not support a theory of multiple correspon- in response to I whenever vA 9 rs .

dence channels. In light of these observations, it is not surprising that
Green's Gabor patches. Green (1986) studied texture- obserers in Green's experiment tended to perceive

defined motion with a rotating annular display similar to clockwise motion in displays such as L In a critical sense,
Navon (1976). The type of stimulus used by Green is the clockwise motion ofi is intrinsic to the format of the

schematized in Fig. 1. Call this stimulus L One temporal stimulus, and has little to do with the textures A and B

period of I consists of four frames, as shown in Fig. I. comprising the patches of I (see Werkhoven et al.,

Each of these frames is comprised of a circle of 1990b). Nonetheless, Green took his results as support

alternating patches of two types of texture, texture A and for the view that similar textures tend to match with each

texture B. From frame to frame, these patches of texture other in generating motion-from-texture.

take rotary steps clockwise around the circle. This rotary

clockwise motion is equivalent to left-to-right motion in
an analogous horizontal display, as indicated by the Motion metamers

dotted lines connecting annular frames to horizontal A psychophysical equivalence relation on a set Q of
frames. physical stimuli is called a metamerism. Equivalent

Let T be an arbitrary texture grabber, and suppose elements A and B of Q) are called metamers. Typically,
that VA is the average response of T to texture A and vs metamerisms are defined using discrimination tasks. For
is the average response of T to texture B. Then the example, if A and B are two illuminated patches that
output from texture grabber T in response to stimulus I differ in spectral composition, we say they are metamers
is a spatiotemporal function whose average value over if an observer cannot distinguish between them.
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In this paper, we focus on a different sort of (a) St.auiu (b) Sti.alum X2

metamerism that we call motion metamerism. Let f)
represent a set of texture patches that vary in spatial fl 1 '® --- ----....--

frequency, orientation, and contrast. The relation that
we wish to capture is the following: for any two textures f2
A and B in Q. we call A and B motion metamers if and
only if any occurrence of A in any dynamic visual FIGURE 2. The binary relation - (transition ianvanance). (a) A sche-

be ra patch of B without infuenc- matic diagram of stimulus 11. I, contains two frames. In the first frame
display can replaced by there is a single patch of texture of type A. In the second frame, there
ing the global motion percept elicited by that display. are two patches of texture, one of type B and another of type A. These
That is. A and B are motion metamers if and only if A patches of texture are offset equal distances to the right and left of the
and B are equivalent inputs to the mechanism that location in frame I of the single patch of texture A. The stimulus I1

computes texture-defined motion. Obviously, A and B sets up a competition between one motion path containing a patch of
texture A and a patch of texture B and another, opposite motion pathneed not be equivalent inputs for other perceptual containing two patches of texture A. (b) A schematic diagram of

processes-as we shall show, motion metamers may stimulus 1, For any textures A and B. we set A - B just if the stimuli
appear quite different. 1, and 14 diagrammed in (a) and (b) respectively are both ambiguous

It is impractical to interchange A and B in all possible in global motion content. That is, both stimuli I and 11 are equally
motion stimuli to verify that they are motion metamers. likely to elicit global percepts of rightward or leftward motion. AnymIonstimdweuli tonvy tha exthmey arest tiouliin meta . textures A and B for which A - B are said to be transition invariant.
instead, we use only two extreme test stimuli, in which For a broad range of motion computations, it can be shown that. for
any failure of metamerism would be most likely any textures A and B. if A - B. then A and B are motion metamers
to appear. The essential core of the test we use is in the strong sense (A and B can be freely traded for each other in any
defined in terms of the stimuli 1t and 1, diagrammed in stimulus without changing the global motion percept elicited by that

Fig. 2. stimulus).

Each of these two stimuli pits two symmetrically
opposite motion paths against each other. Stimulus 1, Motion competition schemes
pits a path comprised of a patch of texture A and a patch
of texture B against a path comprised of two patches of The matching technique could be applied to a variety
texture A, whereas stimulus 1. pits a path comprised of of ambiguous motion schemes for determining the
a patch of texture B and a patch of texture A against a dimensionality of the motion computation. However,
path comprised of two patches of texture B. We presume not all of them have the power to discriminate between
that each of these paths has an associated motion different types of motion channels (see e.g. the discussion
strength, and that the global motion percept (left vs on Green's display). We used an ambiguous motion
right) elicited by one of these stimuli depends only on scheme that was introduced by Werkhoven et al.
which of its two paths has greater motion strength. In (1990b). In this motion competition scheme, one hetero-
the case in which the global motion percept is ambiguous geneous motion path (between patches of texture s and
we assume that the strengths of the two component texture v) competes directly with one homogeneous path
paths are equal. (between patches of texture s).

For any textures A and B in Q•, we say A and B are By varying the properties of the textures v, we can
transition invariant* if and only if the leftward vs determine the heterogeneous motion paths s, v that
rightward motion of each of 1, and 12 diagrammed in are equal in strength to a certain homogeneous path
Fig. 2 is ambiguous (i.e. if each of I, and 12 is equally s, s.
likely to elicit a global rightward or leftward motion Werkhoven et al.'s competition scheme not only al-
percept). lows to determine the dimensionality of the motion

If textures A and B are transition invariant, then the computation, but also allows to determine the number
motion strength of a match between A and A is equal and type (energy vs correspondence) of channels in-
to the motion strength of a match between A and B, and volved in the motion computation. This requires a
the motion strength of a match between B and A is equal thorough analysis (given in the Model section).
to the motion strength of a match between B and B. However, an intuitively clear property of this scheme

If A and B are motion metamers, then stimuli 1, and is that the two types of motion rhannels considered
A. are ambiguous in motion content; hence, A and B are above (energy vs correspondence-channels) yield quali-
transition invariant. tatively different predictions for motion metamery and

On the other hand, for practically all plausible texture- the relative strength of the heterogeneous and homo-
defined motion computations, if A and B are transition geneous motion paths. Hence, they are easily discrimi-
invariant, then they are also motion metamers. Indeed, nated.
the data we present make it clear that this is true of the
computation that is actually used to compute texture- A preview
defined motion. Dimensionality of the computation. In this paper, we

discuss a general motion computation consisting of
multiple motion channels, where each channel may be

*The reason for this term will be clear in Transition Invariance and either an energy channel or a correspondence channel.
Motion Metamners. By studying the above competition scheme with many
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different pairs of texture patches (Expts I and 2), we can '.
determine classes of transition invariant textures
(motion metamers) and infer the dimensionality of the f1

motion computation (Model section). The results Sc m'a I
strongly support the view that texture-defined motion is
computed by a single energy channel.

METHOD f2 V,
In this section we describe the ambiguous motion

competition scheme used in the experiments. This
scheme (proposed by Werkhoven et al., 1990b) differs f:

from other schemes (e.g. Burt & Sperling, 1981; Green,
1986; Navon, 1976; Shechter et al., 1989; Ullman, /
1980) in that it contains a single heterogeneous motion / Motion Moatio

Path Pathpath (between patches of texture I and texture 2) that S (COW) (C"
competes directly with a single homogeneous motion f4
path (between identical patches of texture 2). Except
for textural properties, the other parameters (such as
step size and frame rate) of the motion paths are FIGURE 3. Motion competition Scheme 1. Left: a series of framet
identical. (flfz .... ) is shown successively in time (for details see Meth",.

Instead of varying both textures I and 2, we sampled section). The first frame (f,) contains an annulus of patches of
alternated texture type s and v at regular positions drawn against a

a subspace of possible textures resulting in two (similar) uniform background. The annulus has an inner radius of r, = L.04 deg
schemes: Scheme I and Scheme II. In Scheme 1, we kept of visual angle, and an outer radius or P: - 2.08 deg. The patches of
texture 2 constant (now texture s) and varied texture 2 texture s and texture v are spatially contiguous and alternate within the
(now texture v). annulus. Since the annulus contains eight patches, each patch has a

width of 45 deg. Angular position (* is measured clockwise with repet

Stimulus to the vertical. The second frame (f) is similar to framef1 . except that
the low frequent patches of texture v are now replaced by a uniform

Motion competition Scheme I. In Expt I, we used patch of background luminance. Furthermore.f. is rotated (clockwise)
motion competition Scheme I. The motion stimulus around the center of the annulus over an angle of 22.5 deg with respect

consisted of a series of eight frames (f,f 2. .. ) to tramef,. In a sequence of frames. framef.. 2 is identical to frameshown successively in time. Figure 3 shows a sketch of . except for a rotation around the center over an angle of 45 deg
(clockwise). Right: angular positions v is along the horizontal axis.

the frames. Patches of texture s and v are shown at their angular positions for
The first frame (fA) contains an annulus of patches of framiesf• ... f, yielding rows of patches. The top row of patches s and

alternating texture types s and v at regular positions (see v corresponds to frame fl. The second row of patches s corresponds
Fig. 3, at the left side). Because the viewing distance was to frame f2. Hence, time (or frame number) is along the vertical axis.
constanut the experiment, we will specify When framef, and framef,÷1 are presented in succession, two motion

paths am a priori likely. A homogeneous motion path: clockwise
dimensions in degrees of visual angle. The annulus of matches (CW) between patches of identical texture s (indicated by
texture patches has an inner radius of r, = 1.04 deg, and the arrow pointing down and right). A heterogeneous motion
an outer radius of r2 = 2.08 deg. The mean radius r is path: counter-clockwise (CCW) matches between patches of texture s
1.56 deg. The patches (or sectors) are spatially contigu- and patches of texture v (indicated by the arrow pointing down and
ous. Since the annulus contains eight sectors, each sector left).

has a width of 45 deg.
Frame f 2 was similar to framer,, except that patches positions (q,) of the patches of texture for successive

of texture v are replaced by a uniform patch of back- frames. Angular position is measured clockwise relative
ground luminance. Fuathermore, f was rotated around to the vertical. Such a diagram is shown in Fig. 3, at the
the center of the annulus 22.5 deg with respect to frame right side. Note that the horizontal rows of patches
I (see Fig. 3, left). correspond to frames 1, 2, 3 and 4 respectively. By

In a sequence of frames, the locations and types of definition, motion extraction is based on the dynamic
patches in framef,.2 were identical to framef., except properties of the stimulus, that is the spatiotemporal
for a rotation around fixation of 45 deg. pattern of textures. In the diagram. possible motion

The presentation time of a single frame ("frame- paths are spatiotemporal (oblique) rows of elements.
time") was 133.3 msec. Thus, the presentation time of The arrows pointing to the left and right are examples
the eight-frame sequence was 1.066 sec. The annulus of motion paths to the left and right respectively. In the
revolved at an angular speed of 168.8 deg/sec, yielding a following descrir t the stimulus, we will say that the
local velocity of the patch-centers of 4.6 deg of visual neighboring nit n a motion path are spatiotem-
angle per second. porally linked mnatched". Note that the term

The ambiguous motion stimulus described above con- "matching" is used for the purpose of stimulus descrip-
tains two motion paths. This can be understood most tion only and that it does not refer to a "motion
easily using a diagram in which we show the angular correspondence" computation.
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When frame f, and frame f.., were presented in -
succession, two matches between patches of framef, and
patches of frame f. , were a priori possible. The first f 6
match is a homogeneous clockwise match between sch, 11
patches of identical texture s separated by + 22.5 deg
(indicated in the diagram by the arrow pointing downv V
and to the right). The second match is a heterogeneous ".-
counter-clockwise match between patches of texture v f2 V
and patches of texture s (-22.5 deg, indicated by the
arrow pointing down and to the left). Matches between
frames f. and f..2 are entirely ambiguous. Matches
between patches of frames f. and A.+3 involve large f3

temporal separations (400 msec) relative to the equival-
ent matches between frames f. and f. I (133.3 msec). It HeteHogeeous Hom e
has been shown that motion strength decreases strongly Mo Path Path

and monotonically with temporal interval for intervals ( (CCW) (CW)
larger than approx. 30 msec (Burt & Sperling, 1981; f4
Werkhoven & Koenderink, 1991). Therefore, the
matches between framesf,. andf,+ 3 are unimportant for

motion perception in these stimuli. FIGURE 4. Motion competition Scheme II. This scheme is similar to

Scheme I displays contain homogeneous and hetero- Scheme I (see Fig. 3), except that textures s and v are interchanged.

geneous motion paths in opposite directions. By In Scheme II, the homogeneous motion path contains textures v.

randomizing the direction of rotation, the directions of
the two motion paths (although still opposite) are ran-
domized. However, during the course of a session, when v is varied

The annular pinwheel stimulus was used for various between trials, different families of stimuli are generated

reasons. First, the motion stimulus was presented at a by the two schemes.

constant eccentricity in the parafovea, and the effects of Texture stimuli
anisotropy of the retina were averaged across equivalent
areas of the visual field. Second, it was easier to maintain The textures used to characterize texture-definedfixation so eye movements were be.tter controlled.* motion are patches of sinusoidally modulated gratings

fixaionso ye oveent wer b~er ontolld.*that differ in spatial frequency and amplitude. The
Finally (with the use of circularly symmetric stimuli) a that in pat ial frequnyand ampitude. The
motion path does not end at the boundaries of the grating patches were arranged in eight sectors of an
display, avoiding edge effects. annulus (pinwheel) around the fixation point with the

Motion competition Scheme II. Scheme II (used in grating extending radially in each sector. Two critical
Expt 2) is equivalent to Scheme I. except that textures s parameters that characterize a texture patch at a given
and v are interchanged. The motion stimulus i •ut- location of the pinwheel are amplitude m and spatial

ing motion paths for this experiment are in frequency w. Within a location, grating orientation was

Fig. 4. always radial. The phase y of the grating was a random

Although the heterogeneous motion path (between variable with a uniform distribution.

patches of texture s and v) is identical to that of Scheme We use polar coordinates to further characterize the

I, the homogeneous motion path is different from that pinwheel. Let ip be the polar angle of a point in the

of Scheme 1. In Scheme II, the homogeneous motion image, and p be the distance to the origin (the center of

path consists of patches of texture v. The critical import- the annulus). Then the luminance distribution at the

ance of the two schemes for our paradigm concerns the point p, (p in sector j of frame i is:

question of whether, when a particular s and v are L4(p, (p) =- 4[ +msin(2xr(pw,. + yv)J. (1)
chosen so that motion paths are balanced in Scheme I,
the paths will remain balanced when the same s and v We define the mean spatial frequency DLJ as the spatial
are used in Scheme II. From the subjects' point of view, frequency at mean radius r. The mean spatial frequency
however, there is no difference between the two schemes o/ of a texture patch depends only on whether j is odd
because, for any stimulus generated by Scheme I, an or even. That is, two spatial frequencies, a,, co, strictly
identical stimulus can be generated by Scheme 11. alternate between adjacent patches on every frame of the

display.

*Torsional eye-movements induced by the" rotating annuli (cyclo- Within a trial, the amplitude mi/ of a sector iQ
induction) were not controlled in our experiment. Balliet and depended only on whether i and j were even or odd. On
Nakayama (1978) reported the ability ofextremely trained subjects odd frames, mo., was chosen as m, or rn according to
to make stepwise eye torsions up to rotations of approx. 26 deg for whether the sector j was even or odd. On even frames,
large field stimuli (25-50 deg of visual angle). However, we do not
expect torsional pursuit in our experimental conditions: small field sector amplitude m,1 alternated between 0 and m, in
stimuli, brief presentations, fast motion, unpredictable motion Scheme I and between m, and 0 in Scheme II. Between
direction, and ambiguous or near-threshold motion stimuli, trials, m, and w, were changed. Sixteen values of
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amplitude m, from 0 to I were used increasing by steps From trial-to-trial, the spatial frequency wa, and
of 0.0625: 0, 0.0625, 0.13,..., I. Spatial frequency w, amplitude m, of texture v was varied. The experiments
was varied over a range of three octaves: determined the probability P,(m,; WJ,) of perceptual
1.2, 2.5, 3.7, 4.3, 4.9, 5.6, 7.4 or 9.9 c/deg. The amplitude dominance of the heterogeneous motion path as a
m, and spatial frequency co, of texture s were constant function of m, for certain ca, using the method of
throughout the experiment: m, = 0.5, w, = 4.9 cideg. constant stimuli. The subscript i, i = I. 2. indicates Expt

The phase ',,, 0 < -,< 2<r, was chosen randomly and I with competition Scheme I (Fig. 3) or Expt 2 with
independently for every combination of i and j, that is, Scheme II (Fig. 4).
for every single patch. The phase randomization of every The probabilities P, (m,; oJ,) and P; (m,; wJ,) are esti-
patch makes the motion of the stimulus inaccessible to mated by the fraction of perceptually dominant hetero-
any first-order (Fourier-based) mechanism. Phase ran- geneous motion paths out of 36 presentations. Spatial
domization insures that motion mechanisms sensitive to frequency aw, was varied over a range of three octaves:
correspondences in stimulus luminance were not system- co, = 1.2, 2.5, 3.7, 4.3, 4.9, 5.6, 7.4 and 9.9 cideg. Within
atically engaged (Chubb & Sperling, 1988). a session, amplitude m, was varied (pseudo-randomly

Figure 5 shows an example of a series of frames for from trial-to-trial; co, was varied only between sessions.
Scheme 1. Texture s is a "medium" frequency grating For each spatial frequency w,, Expts I and 2 were both
and texture v is a "low" frequency grating. The regions conducted within one session.
inside and outside the annulus (background) were uni- Subjects viewed the stimuli in a room with dimmed
form gray and had a luminance value (L4 = 72 cdimn2). background illumination.
Within the annulus' texture patches the expected lumi-
nance value was equal to the background luminance. EXPERIMENT 1: SCHEME I

Apparatus Results

The experiment was controlled by a IBM 386 PC By definition, the homogeneous path (consisting en-
compatible computer, driving a TrueVision AT-Vista tirely of identical patches of texture s) does not change
video graphics adapter. A 60 Hz Imtec 1261L monitor in this experiment when texture v is varied (see Scheme
with a P4-type phosphor was used to display the stimuli. I. Fig. 3). The strength of the heterogeneous path, which
The screen dimensions were 21.8 x 14 cm (640 x 480 is composed of alternate patches of textures s and v is
pixels; 12.3 x 8.0 deg visual angle).* We used a look-up varied by varying spatial frequency and amplitude, co,
table to linearize the monitor's luminance values with the and m,, of texture v. Figure 6 shows the probability
gray values of the computed stimulus patterns. The P, (m.; ,) of reporting the heterogeneous motion path
decay time to 10% and 1% intensity was about 1.3 and as dominant as a function of the amplitude m, of texture
6.2 msec respectively which is shorter than the temporal v. Each panel shows P, (in,; cv,) for a different value of
properties of retinal processing (Farrell, Pavel & Sper- spatial frequency w,.
ling, 1990; Sperling, 1976). The data show that the probability of reporting the

heterogeneous path as dominant increases monotoni-
Subjects cally from 0 (for small m,) to I (for m, = 1) for all values

Two subjects participated in the experiments: one of of co, except the highest, where the probability of
the authors (PW) and a colleague (JS). pw is heterogeneous motion dominance has only reached
emmetropic. JS is myopic (-0.5 D) but was.in focus for about 65% when m, = I. A remarkable feature of these
the viewing distance used. Both subjects were experi- data is that in all eight panels, the probability P, (m,; c,.)

enced psychophysical observers. Natural pupils, binocu- of heterogeneous motion dominance exceeds 50% for
lar viewing, and spectacle corrections were used sufficiently high amplitude of patch v.
throughout. Several naive subjects confirmed the main The upper left panel of Fig. 6 shows data for a two
findings for the experiments. octave difference between the spatial frequency of tex-

ture s (w, = 4.9 c/deg) and the spatial frequency of
Procedure texture v (cw, = 1.2 c/deg). Heterogeneous motion is per-

Subjects indicated the dominant motion path (coun- ceived in 50% of the presentations when the amplitude
ter-clockwise/clockwise) by pressing one of two buttons. in, of texture v is approx. 0.2. Note that at this balance
In both experiments, texture s (the standard texture) had point where both paths are equally likely, both the
amplitude m, = 0.5 and spatial frequency w, = 4.9 c/deg. amplitudes and the spatial frequencies of textures s and

v are markedly different. Once m, exceeds 0.5. the

"Due to the limited bandwidth of the video amplifier (30 MHz) of the heterogeneous motion path is dominant in 100% of the
monit*or, an anisotropy was observed for the average luminance of presentations. A 100% perceptual dominance of a het-
differently oriented textures that contain high spatial frequencies. erogeneous over a homogeneous path demonstrates that
Therefore, we only displayed the pixels at column position m and the similarity between the textures in a motion path
row position n for which (m + n) was even. The other pixels were certainly is not essential for motion strength. Indeed, for
dark. Hence, vertical and horizontal gratings share a common
"carner 'component. This procedure forfeits maximum luminance sufficiently large n,, the.heterogeneous path is dominant
and resolution in favor of eliminating anisotropy; the net resolution over the homogeneous path for every combination of
(320 x 240 pixels) was more than adequate for the displays. frequencies tested in Fig. 6.
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(a) (b)

ic) (d)

FIGURE 5. An example of the ambiguous motion display (as sketched in Fig. 3). Frames f,.f 2,f3. and f. (containing the
patches of textures) are shown in (a). (b), (c) and (d) respectively. For this example, textures s and v differ only in their spatial

frequency: the spatial frequency of texture s is two octaves higher than that of texture v.

The transition amplitudes between heterogeneous and curve around the transition amplitude. Within this se-
homogeneous motion occur where the curves of Fig. 6 lected range, the curve was assumed to be linear, and
cross 50%. The transition amplitudes occur at a wide these data points were subject to a least square method
range of different amplitudes rn, for different spatial of linear regression to estimate the regression coefficients
frequencies o_. Each P, curve is well characterized by u, (cv,) and a, (coj).
two parameters: the transition amplitude u, (co,) and the Estimates of p, (co,) are shown in Fig. 7 as a function
steepness a, (cw) at the transition amplitude (the sub- of the varied spatial frequency co, (open circles). The
script I indicates Scheme I). The transition amplitude transition amplitude Pi (cv,) increases systematically with
, (cov) is defined as the amplitude m, of texture v, increasing spatial frequency co, of texture v for both

necessary for balancing the motion paths [such that subjects. Together, the data of Figs 4 and 5 indicate that
P, (m,; coy) = 50%], the steepness a, (co,) is defined as the the strength of the heterogeneous motion path increases
derivative 0/(0mJ)P, (mn,; co,) with respect to mn, at the with increasing amplitude rn, but decreases with increas-
transition amplitude. ing spatial frequency co,.

To estimate transition amplitude ul (c(,) and steepness Estimates of a, (co,) are shown in Fig. 8 as a function
ajw (cv). we selected* data points of each probability of the varied spatial frequency cw, (open circles). The

steepness a, (cv,) of the probability curves at transition
trniin amplitude/ ) (Ca,) decreases with the spatial frequency cv,

"*In principle, we selected the three data-points around the transition texture v. In the Model section we elaborate on this

amplitude (the crossing of the curves with the 50% guide line) that

were closest to the 50% guide line. There were only two exceptions, finding.
First. at spatial frequency ca, = 1.2 c;deg, for subject PW, Expt 2,
we selected the data points with amplitude m, = 0.19, 0.25 and 0.31 Discussion
(to avoid the low amplitude values, for which Scheme II becomes Sufficiency of a single energy-channel. In a single
ambiguous). Second, at spatial frequency oa, = 2.5 c/deg, for sub-
ject JS, Expts I and 2. we selected the data points with amplitude gy-channel, we assume that only one single type of
m, = 0.38 and 0.5 (since we had no data points close to the guide texture grabber operates on the input yielding an activity
line). representation of the input. Motion strength is the result

Vit 3 4--C
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of a motion energy analysis scheme applied to this dominate homogeneous motion is also consistent with
activity representation. The motion strength of a path is multiple energy-channels, as will be shown in the Model
computed from the product of activity measures between section. For example, the dominance of heterogeneous
successive patches along the path in space-time. Motion motion may well be the result of two independent
strength of a heterogeneous path balances homogeneous energy-channels, both favoring heterogeneous motion.
motion strength when the responses (activities) to tex- To uniquely determine the number of channels involved.
tures v and s are equal. Differences in textural properties we need the results for competition Scheme II together
between elements s and v are irrelevant as long as the with a formal analysis (Model section).
activities are equal, just as, in scotopic vision, differences Secondary contributions of a correspondence-channel.
in wavelength are irrelevant as long as the rod response In the Discussion above, we argued that a single-channel
is the same. model is sufficient to model the (amplitudefrequency

The results for Scheme I suggest an activity transform- dependent) dominance of heterogeneous motion found
ation that is a monotonically increasing function of for Scheme I. However, we cannot exclude a possible
amplitude and a monotonically decreasing function of secondary effect of texture similarity based on this
spatial frequency. For example, to balance the activity of scheme. To motivate Expt 2, we need to elaborate on this
texture s, with amplitude in, and spatial frequency co,, argument.
with a lower spatial frequency texture v, (in,; ca,) re- Although motion perception may be dominated by a
quires a in, < m,. This pattern of results suggests a single single energy-chaninel, there may yet be a secondary
class of texture grabbers consisting of a low-pass spatial contribution of a correspondence-channel.
filter followed by rectification. The relative strength of the heterogeneous motion

We argued that a single energy-channel is sufficient to path would decrease as the differences between the
explain the results of Expt I. It is important to note here, spatial frequencies and amplitudes of successive patches
however, that our finding that heterogeneous motion can of textures s and v increased. Suppose there were a
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FIGURE 6(a). Caption overleaf.
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FIGURE 6. Probability P,(m,; o),) of dominance of a heterogeneous motion path over a homogeneous motion path is shown
as a function of the amplitude m, of texture v for different spatial frequencies (, of texture v for two subjects. Open circles
represent the probability P, (P,; ai,) for Scheme I (Fig. 3); solid circles P2(m,; o,) for Scheme ii (Fig. 4). The horizontal dashed
guide line indicates a 500/6 probability of heterogeneous motion dominance. The amplitude m, and spatial frequency cw, of

texture s is the same for all panels: n%-,* 0.5 and a, = 4.9 c/deg. (a) Subject PW; (b) subject JS.

secondary contribution of a correspondence-channel in afice would imply that there is no contribution of a
Expt I, sensitive to differences between textures in either correspondence-channel.
amplitude or frequency. Because the correspondence-
channel favors the homogeneous path (by definition), EXPER1MENT 2: SCHEME U
motion balance requires v in the heterogeneous path to
have a higher amplitude m, to overcome the similarity in ResuIts
path s, s than if there were no correspondence-channel. Figure 6 shows the probabilities P2 (m,; co,) of the
Thus, in Scheme I, a secondary correspondence effect dominance of the heterogeneous motion path as a
would displace transition amplitude Mi (coj) to higher function of the amplitude m, of texture v for different
values. spatial frequencies co, of texture v. The data points for

To test for a correspondence-channel, we introduce Scheme II are marked by a solid circle.
Scheme 1I in Which s and v are interchanged (see Fig. 4). When m, - 0, the display is physically as well as
If there were a correspondence effect, in Scheme II it perceptually ambiguous. A value of 50% is shown for
would favor the v, v path and the transition amplitude m, = 0, though no data were collected at this point. By
i, (co,) would be shifted below #2(W,) for any texture v. varying the amplitude of texture v in this experiment, the

When the homogeneous and heterogeneous motion strength of both the heterogeneous motion path and the
paths remain balanced after interchanging textures s and homogeneous motion path are varied. As the amplitude
v, this is called transition invariance. Transition invari- m, increases, the probability of heterogeneous motion
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FIGURE 7. Transition amplitudes/A,(j,) as a function of spatial frequency w,•. Open circles for Scheme 1. solid circles for
Scheme 11. 'Me vertcal dashed line indicates the spatial frequency of texture s: w, -. 4.9 cideg. T~he horizontal dashed guide

line indicates the amplitude of texture s: mi, = 0.5.

dominance first increases to a maximum, then decreases To compare the steepness values ar (co, for Scheme 11
to zero for high amplitude m,. On the whole, for with steepness valuesea, ((0J(for Scheme 1), the absolute
amplitudes above 0.I1 or, in a few cases, 0.2, the Scheme I value of a,(co,) is shown as a fur.'tion of the varied
and Scheme 11 curves are mirrfor complementary, and spatial frequency wo, in Fig. 8 (using solid circles). It
seem to cross at exactly P - 50%/. That is, the two should be noted that the estimation is not very accurate:
schemes produce remarkably similar transition ampli- the standard deviation in the distribution of steepness
tudes, coefficient crco,) is approx. 20%/. However, like aý (,-, ,.

To examine the correspondence between the data the steepness a,(co,) shows a tendency to decrease with
from Schemes I and II, some definitions are needed. Let increasing spatial frequency wo, of texture v.
the transition amplitude p2(cov) be the amplitude m., of
texture v for which the motion paths are balanced, and Discussion

the probability of heterogeneous motion dominance Transition invariance and motion metamers. It is im-
P:(m,; w,) is 50%. The steepness at this transition mediately clear that. for most spatial frequencies wu, of
amplitude is a2(co•). The transition amplitude p.,(co,) and texture v, the transition amplitude/a,(ca) is equal within
steepness value a2(co,) are estimated as u,(wo,) and measurement error to transition amplitude/ .,(co,) (see
a,(co,) in the previous section. Fig. 7). In fourteen of sixteen cases, the transition

To compare the transition amplitude /uzi(co,) for amplitudes are invariant when the textures s and v are
Scheme 11 with transition amplitude ju,(wo,) for Scheme interchanged. This we call transition invariance.
1, they are presented together as a function of spatial In two cases (the highest spatial frequency used--
frequency cu, in Fig. 7. Transitions/z,.(co,) are presented co. = 9.9 c/deg--for both subjects), a small difference
with solid circles. As in Scheme 1, the amplitude/42(co,) between transition amplitudes for Schemes I and 11
of texture v, necessary for balancing the motion paths, is observed. At the high spatial frequency of v, the
increases systematically with increasing spatial frequency amplitude of texture v necessary to balance the motion
oi, of texture v. An exception for both subjects are the paths is slightly smaller for Scheme 11 than for Scheme
transition amplitudes for wo, =9.9 c/deg. 1. This shift in transition amplitude suggests a small

PW is

0s1

0 
"0

O44

00

1 10 5 10

Spaa Frequency of v (cpd) spatial Frequency of v (cpd)
FIGURE 8. Steepness values e,(w,) as a function of spatial frequency w,. Open circles for Scheme I. solid circles for Scheme

SI. (Note that to facilitate comparison absolute values an given!) The vertical dashed guide line indicates the spatial frequency
of texture s: w: - 4.9 c0de .5
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similarity effect (a small contribution of a correspon- petition Scheme I, and vaned the amplitude of
dence-channel), and was discussed in the Discussion of texture s.
Expt I.

Transition invariance implies that textures s and v Results
(at transitions) are equivalent with respect to motion We kept the frequency of textures s and v constant
processing and can be interchanged in any motion (w, = 4.8 cideg and co, = 1.2 cideg) and measured the
path (Scheme I and Scheme 1I) without affecting motion transition amplitude p, as a function of amplitude m,
strength. This leads to the important conclusion that (Scheme I). Transition amplitude was estimated from the
textures s and v are (texture-defined) motion metamers. psychometric curves using the method described earlier.

It is interesting to note that Green (1986, Fig. 7. p. Figure 9 shows the transition amplitude 1 of texture
604) was unable to find an amplitude that could make v for three amplitude values of texture s (m, = 0.50, 0.75
a spatial frequency patch of 5.0c,;deg into a motion and 1.00) for three subjects. The data strongly suggest a
metamer of a 1.7 c/deg patch. We had no difficulty in linear dependence of the transition amplitude of texture
finding metamers between even more disparate spatial v on the amplitude of texture s. The solid lines are the
frequencies. However, our data in Fig. 5 show that one best fits (minimizing the sum of squares), accounting for
of the two subjects would require the 5 c/deg stimulus to at least 97% of the variance for each subject.
have more than two times the amplitude of the 1.7 c/deg
stimulus, and this is outside the range of amplitudes that Discussion
Green explored. We showed that the transition amplitude of texture v

Necessity of a single energy-channel. The general needed to balance the motion path s, v with the motion
finding of transition invariance strongly constrains the path s, s varied linearly with the amplitude of texture s.
possible ways in which motion can be computed between This dependency is easily accommodated in a model
textures in the class we are considering. where the texture grabber is linear in the amplitude of

Transition invariance shows that there is no secondary the texture. In fact, one can easily show that amplitude
contribution of correspondence-channels (see the linearity follows directly from the linear data under the
discussion on this issue in Expt 1). The effect that a assumption that the texture grabber is a separable
patch of texture v has on the strength of motion is function of spatial frequency and amplitude. A linear
independent of the other patches in the path. At a (low-pass) spatial frequency filter is a simple example of
transition, the strength of motion path s, v is equal to such a separable filter characteristic.
that of v, v and that of s, s, although a correspondence-
channel would yield stronger motion for the homo-
geneous paths. MODEL

The only alternative is a system of multiple energy-
channels that must be combined and represented by a Summary of model constraints
single scalar representation (e.g. summation of energy- We used the analogy with colorimetry and some
channels). In the Model section, we prove (under the general assumptions about the possible motion compu-
assumption of channel summation) that if multiple tations involved to reach the conclusion that texture-
energy-channels were involved, the transition amplitude defined motion strength is ruled by a single
would generally shift when the textures s and v are energy-channel. We summarize our reasoning.
interchanged in Schemes I and 11. However, when
motion perception is exclusively ruled by a single energy- 1.0
channel (the product of the activity of a single type
of texture grabber), the transition amplitude is in-
variant when the textures s and v are interchanged. 0.8
Hence, transition invariance uniquely supports a
single energy-channel model of texture-defined motion 0.6 -

ca. 'perception. E a"
S0.4 -

EXPERIMENT 3: AMPLITUDE LINEARITY 0.

Motivation 0.2

In the above experiments, we have shown that the
transition amplitude p(coj,) increases systematically -, I I I I
with increasing spatial frequency o), of texture v for 0 .2 0.4 0.6 0.s 1.0
both subjects. The strength of the heterogeneous motion 0 0. 0
path in Scheme I increases monotonically with increas- Amplitude of
ing amplitude in, but decreases with increasing spatial FIGURE 9. The dependence of transition amplitude jul (WJ,) on

In order to further specify the dependency amplitude m, of texture s. The spatial frequency w, was 4.9 c/deg, and
co, was 1.2 c/deg. Competition Scheme I was used. Circles, subject JS;

of motion strength on amplitude, we performed an squares, subject PW. The solid lines show the best linear fit (minimizing
experiment similar to that described above using com- the sum of the squared deviations).
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We discriminate two classes of motion computations: 1.io pah & J.)~( I( (
energy-channels and correspondence-channels, yielding I -"" ' " I _ -,
different metrics for the strength of a motion path.
Consider, a heterogeneous motion path composed ofr
patches of texture s and v. The strength of an energy- texture grabbers F F
channel for an s, v path is determined by the product of
the activity of texture s and that of v. The activity of a
texture is the output of some nonlinear transformation
(texture grabber) that maps texture into a scalar. Energy-
channels are insensitive to differences in textural proper- G G
ties and allow heterogeneous motion paths s, v to
dominate over homogeneous paths. By definition, the motion energy delay

strength of a correspondence-channel is determined by analysis delay
the similarity of the textural properties of textures s and X
v. That is, homogeneous paths s, s and v, v dominate
heterogeneous paths s, v.

In theory, multiple channels of each type may be-.,,
involved in a motion computation yielding a motion linear
strength vector representation of arbitrary diimiensional- combination
ity. However, the experimental results impose the
following constraints. First, the class of motion paths decision left __ r7 -

equal in strength for both Scheme I and Scheme II .1 g

indicates that the : -mputation is one-dimensional. Sec- -_ _ -I_+_ _

and, the invariance of transit ,ns for Scheme I and FIGURE 10. Diagram ofa single channel motion computation. First
Scheme II exclude correspondence-channels. This leaves stimulus amplitude is extracted followed by a linear spatial filter F and

us with a system of multiple energy-channels, that rectification. The spatial filter together with the rectification is called

combine into a single scalar representation of motion "texture grabber- (the first stage). The output of the texture grabber

strength. is called activity. The second stage (motion energy analysis) is basicall.ya coincidence detector, it computes the product of the delayed activity
Although we have shown that a single energy-channel at location I with the current activity at location 2. Response

is sufficient to model the data, we promised a proof for variability acrmss trials is due to internal noise which is modeled by an

the necessity of a single energy-channel. This proof is additive noise having a standard model density function with mean 0
based on the inconsistency of multiple energy-channels and standard deviation 1. The heterogeneous path is dominant

with transition invariance. We assume a system of whenever the net motion strength in the direction of the heterogeneous
motion path (after adding noise) is positive (decision stage).multiple energy-channels that linearly combine to rep-

resent motion strength (summation of energy-channels).
Such a system would result in different transitions for
Scheme I and II. The proof is given and discussed in the populate these regions. The output of a linear filter to ,
Appendix. texture is variable and depends on the local phase of the

texture. The purpose of rectification is to transform
T e hregions of highly variable response into regions of high

The energy-channel "average value, thus insuring that the rectified output
In this section, we derive the characteristics of the registers the presence or absence of texture, independent

single energy-channel. This energy-channel consists of of phase. Examples of rectification are half-wave rectifi-
two stages. The first stage is the nonlinear transform- cation (setting negative values to zero) and full-wave
ation (texture grabber). The simplest version of a texture rectification (anything that is symmetric with respect to
grabber is a spatiotemporal linear filter followed by input sign, such as absolute value or squaring).
rectification (see Chubb & Sperling, 1989a, b). The out- The output of Stage I is called activity. The resulting
put of this first stage (the texture activity) is fed into the transformation (accomplished by Stage 1) yields a
second stage: motion energy analysis. Stages one and spatiotemporal function whose value reflects the local
two are sketched in Fig. 10. texture preferences of the Stage I filter in the visual field

Stage 1: texture grabbers. It is now well-established as a function of time (see also Bergen & Adelson, 1988;
(see review by Shapley & Enroth-Cugell, 1984), that Caelli, 1985). The activity transformation of the texture
early retinal gain-control mechanisms pass not stimulus grabber depends on the amplitude m and spatial fre-
luminance, but rather a signal approximating stimulus quency €0 of the textures involved.
contrast, the normalized deviation of stimulus lumin- In Expt 3, we have shown that texture activity is linear
ance from its local average. We assume that the in texture amplitude. This is accommodated by a spatial
spatiotemporal filters of Stage I operate on stimulus filter that is linear in stimulus contrast. We can further
contrast. characterize the spatial filter characteristics by the ampli-

The output magnitude of these filters varies over the tude of its Fourier transform: F(co). We assume that
visual field, depending on what textures happen to rectification is an absolute value operation. Thus, after
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rectificatt .n, the activity transformation T is pro- Linear combination of both components with equal
-'ortional to m and to F(w): weights yields a net motion strength D, in the direction

T(m, co) = mF(w). (2) of the heterogeneous path:

This texture activity T is fed into the second (motion D1 (m,, oi, InM, Co) -S1 •,(m. to,,, M,. o',)

energy analysis) stage. + Sl.ho(m,, o,). (5)
Stage 2: motion energy analysis. The second stage Response variability across trials is due to additive

(motion energy analysis) is a coincidence detector: it internal noise which is assumed to be distributed as a
computes the product of the delayed activity at Location standard normal density function with mean 0 and
I with the current activity at Location 2 (van Santen & standard deviation ;. (Fig. 10). A linear addition of noise
Sperling, 1984). For the displays we use in our exper- yields the internal decision variable i which has a normal
iments, the output of the second stage corresponds to distribution N with mean D and standard deviation ;..
motion strength. According to signal detection theory (Green & Swets.

To simplify the computation in the model, we assume 1966) the probability P of heterogeneous motion domi-
that the first-stage spatiotemporal filter is space-time nance is:
separable. Indeed, space-time separability seems to be
the rule in apparent mo, "on (Burt & Sperling, 1981; van P, (m,; Ca,) = P(i > 0)
de Grind, Koenderink & van Doorn, 1986).* Given I 0c
space-time separability, we can ignore the temporal = -"(in, W, i, cv, ;.' di.
component of filtering because temporal patterns were 27t;. .J4 (6
not varied in our stimuli.

We proceed as follows. The perceived direction of Substituting motion strengths [expressions (3) and (4)]
motion is considered to be the outcome of a competition into the additive linear combination [expression (5)] and
in motion strength between motion paths. Within a then substituting [expression (5)] into the noise-driven
path the strength of motion between a patch of texture decision process [expression (6)] yields:
v and a patch of texture s is determined by the product I f0
of the activities of the first stage. We assume that the P, (m,; coO) = N •[m,F(o, )m,F(cu,)
strengths of detectors for all paths are additive in the

final motion percept, and adopt a linear combination - m2F(co,)], . di. (7)
model (Dosher, Sperling & Wurst, 1986). Additive in- for the probability of heterogeneous motion dominance
ternal noise determines the shape of the psychometric for Scheme I (Fig. 3).
functions for motion direction as a function of ampli- Similar reasoning yields the net motion strength D:
tude. and the probability P,(m,; Co,) of heterogeneous motion

Consider the strength model with respect to compe- dominance in Scheme II (see Fig. 4):
tition Scheme I (Fig. 3). In one direction there is a
homogeneous motion path containing patches of identi- D2(m,, o,, m,, Co,) = s, C,, ( M ,, c ,)
cal texture s. In the opposite direction, there is a
heterogeneous motion path containing patches of differ-
ent textures s and v. For sine wave stimuli, a half-Re- =mF(oa,)m,F(oa,)-mF"(c,) (9)
ichardt model (simple product) is equivalent to the whole and
Reichardt model (difference of products) (van Santen &
Sperling, 1985), so we need to consider just a simple P,(m,; Ca,) = I f
product rule. -V, N{[PlF(c,)mfF(c,)

The strength of the heterogeneous motion path is: -mFz(w,)],;.}di. (10)

S1.he (M, Co,, Im,, co,) = mF(C,)mF(oj,). (3) This model predicts the transition and steepness at

The motion strength Si.h. for the homogeneous motion transitions of the probability curves for both the exper-

path is equal to: iments.

Slho (Ms, CO,)---- m 2F 2(ws) (4) Predictions for Scheme I

For different spatial frequencies cu, of texture v, we
(strength in the opposite direction has opposite sign)- measured the probability P,(m,; cu,) of heterogeneous

motion dominance as a function of the amplitude m, of

*It is reasonable to consider that the linear filter in the texture grabber texture v. Our model predicts that the probability P, of
may itself be composed as a weighted sum of many filters, i.e. filters heterogeneous motion dominance is an error function
that also are in the processing path for first-order motion. A linear of the net motion strength D, [see equation (6)]. In
filter composed as the sum of component filters would be this experiment, the net motion strength D, is linear in
space-tinme separable if each of its component filters were
space-time separable and had the same temporal function, m , Hence, we expect an error function for the prob-
pendent of spatial scale. This seems to be the case in motion ability function P,(m,;oc,) as a function of mn. [see
processing (Burt & Sperling. 1911; van de Grind et al., 1986). equation (7)].
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Transition amplitude. The transition amplitude M, (c.) equation (10)]. However, for Scheme II (unlike for
is defined as the amplitude m, of texture v at which the Scheme I) D11 is not linear with the varied amplitude m,
probability of heterogeneous motion dominance of texture v. As we increase the amplitude m, of texture
P, (m,; cov) is 50% for a given spatial frequency cw, of v, D11 shows a quadratic dependence on m,. Therefore.
texture v. Hence. for m,. = pu (ca, ), the strength of the we do not expect an error function for P2 (m,; ,).
heterogeneous and homogeneous motion paths are If amplitude m, of texture v is zero. the probability of
balanced and we have S.h, = -Sl.ho or [see expressions heterogeneous motion dominance P2 will be 50% (the
(3) and (4)1: motion stimulus is purely ambiguous!). Starting at

., (co,)F(c,) =m, F(,) = , (11) m, = 0, it first increases linearly with m, is maximal for
m. = mF(cw,)i[2F(c,)J, and decreases again with further

where K< is a constant equal to the activity of standard increases of m,.. Obviously, there may exist aa amplitude
texture s. If F(cw,) is a low-pass filter, u,(w,) will be a m, =-.M (between the "optimal" amplitude, that yields a
monotonically increasing function of co, (as supported maximal D., and a very high amplitude, that yields a
by our experiments): negative D2) for which P2 = 50%.

gl~ = KF` (co. (1) Analogous to the derivation in the previous section.
() -. ( one can find the analytic expressions for the transition

Steepness. The steepness , (cw) is defined as the M..(co,) and steepness, 02(w,) of the probability curves for
derivative of P, (min wj) with respect to m, at transition Scheme II. The expressions for the transition amplitudes
amplitude c, (w,): are equal: u2(co,)j=uj(co.). The expressions for the

steepness of the transitions for Scheme I and II differ
a,(c,)= -Z- P1(m Co,, . only in sign: ao,(coj = -al (oa).

cmv

I ( The texture grabber
V F'21r,;.2 We can simply find the Fourier transform F(e) of the

low-pass filter from the reciprocal transition u,'(co,) [see

Thus. the steepness , (co,) is expected to decrease as a expression (12)] and from the steepness a,(w,) as a
function of the spatial frequency wo, for low-pass filters function of spatial frequency co, [see expression (13)].
(as supported by our experiments). The reciprocal transition amplitudes are expected to

In conclusion we expect error functions for the prob- be proportional to the function F(ca). Estimates of the
ability P, (m,; co,) of heterogeneous motion domin- ice reciprocal transition amplitudes p7,'(co) are shown in
as a function of amplitude m, with (a) a transition Fig. II.
amplitude ju, (ow,) that is inversely proportional with From the reciprocal transitions in Fig. I!, it follows
F(wl,) and (b) a steepness a, (c,) that is proportional that F(cl) is a low-pass filter in the range of frequencies
with F(l,). If we have low-pass filters, F(we,) decreases examined.
monotonically with spatial frequency ta,. The model predicts that the steepness of the prob-

ability function is proportional with the function Flea,)
Predictions for Scheme 11 and inversely proportional with ;. (the strength of the

For different spatial frequencies ca, of texture v, we internal noise). Thus, unlike the transition amplitude.
measured the probability P.,(m,; ca,) of heterogeneous the steepness is biased by the internal noise contribution.
motion dominance as a function of the amplitude m, of If the relative strength is constant and independent of the
texture v. P.(m.: c,.) is an error function of D11 [see spatial frequency and amplitude of the patches of texture

mi.

00

~ccc

5 10 1 S 10
Spatial Frequency of v (cpd) spatial FnKUency of v (cpd)

FIGURE II. Reciprocal transitions p,-I (w,) as a function of spatial frequency o,. Open circles ror Scheme 1; solid circles
for Scheme II. The vertical dashed guide lini indicates the spatial frequency of texture s: w, - 4.9 cideg. The horizontal dashed
guide line indicates the reciprocal amplitude of texture s. The solid line curve is the mean of the reciprocal transitions. In terms
of the model, this curve shows the amplitude of the Fourier transform of the spatial filter F(a) of the texture grabber involved

[see equation (2)l.
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involved, the steepness a,(uo,) is expected to be pro- Fig. 3), with fixed amplitude m, = 0.5 and fixed spatial
portional with F(j,). Estimates of a,(w,) are shown in frequency wo, = 4.9 c/deg. In the other interval we
Fig. 8. The steepness shows a tendency to decrease with showed an annulus of gratings v (see framef2 of Fig. 4).
increasing spatial frequency. However, we find some with amplitude m, and spatial frequency w,. The order
nonmonotonicity, in particular for higher spatial fre- of presentation of the intervals was randomized. Each
quencies. This may reflect a certain variability of the annulus was shown for 133 msec (which is equal to the
internal noise for different spatial frequencies. frame display time in the motion stimulus). The intervals

were separated by a time interval of 133 msec in which
the screen was uniform with background luminance.

EXPERIMENT 4: PERCEIVED CONTRAST Apparatus, viewing conditions, and other aspects were

We have discussed texture grabbers and motion en- identical to the motion experiment.

ergy analysis in terms of objective amplitude of patches Procedure
of texture. The experiments implied that the activity of
the texture grabber increases monotonically with objec- The task of the subject was to indicate the interval that
tive amplitude and decreases monotonically with spatial contained the patches of grating with the highest ampli-

frequency. An interesting question is whether this re- tude. We measured the probability P,(m,; wJ that ob-

lation is consistent with the subjective amplitude of static servers judge the grating v as the grating with the highest
grating contrast as a function of spatial frequency. In amplitude as a function of the objective amplitude m, of

other words, is the activity of a texture grabber simply grating v. In the amplitude matching experiment, we

proportional to the subjective amplitude? examined two spatial frequencies: co, = 1.2 c/deg, and

To answer this question, we performed an amplitude .,- - 7.4 c/deg of grating v. These were the lowest and

discrimination experiment. highest spatial frequencies for which we found transition
invariance in our modern experiment. From these prob-
ability curves, we estimated the matching amplitude of

Mfethod grating v for which the perceived amplitude of grating s
In a two interval presentation subjects looked at an and v was equal. The precise estimation of the matching

annulus containing either gratings s or v. In one interval amplitude was analogous to the estimation of transition
we showed an annulus of gratings s (see frame f 2 of amplitude in the motion competition experiments.

PW, v: 1.2 cpd PW, v: 7.4 cpd

0

0.0 0.4 0.8 0.0 0.4 0.8

Ampltude m of v Amplitude m of v

JS, v: 1.2 cpd JS, v: 7.4 cpd

0.0 . 0.4 0.8 0.0 0.4 0.8

Amplitude m of v Amplitude m of v

FIGURE 12. Results of the perceived amplitude experiment. Observers compared the amplitude of a grating-v (spatial
frequency aw, and amplitude m,) with the amplitude of texture s (m, - 0.5, w, - 4.9 c/deg). Shown are die probabilities P, for
judging the amplitude of v higher than that of s (solid circles). The matching amplitude for texture v is the crossing of the
curve with the dashed 50% line. To compare the matching amplitude with the transition amplitude in the motion experiment,

we have shown the probabilities P,(n,,) for Scheme I (open circles).
Vl W64-0
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Results motion. Also, Georgeson and Shackleton (1989) show
In Fig. 12, we show the probabilities of judging the that drifting squarewave gratings with missing funda-

amplitude of grating v higher than that of grating s (with mental (MF) moved backwards while presented mon-
m, = 0.5) as a function of objective amplitude m, (solid ocularly (following the third harmonic) but moved
circles). For all conditions and subjects, the perceived forwards when presented dichoptically. They suggested
amplitude of texture v increases monotonically with its that the perceived direction of dichoptic apparent
objective amplitude m,. The amplitude m, where the motion was consistent with a system that combines
curve crosses the 50%. guide line is the matching ampli- information across spatial frequency channels to identify
tude. For a -low" spatial frequency grating v local features and then tracks the location of corre-
(c, = 1.2 c, deg), we find that the perceived amplitudes of sponding features over time.
s and v are matched when m, = 0.47 for subject PW and Generalizing the above reasoning to second-order
m, = 0.44 for JS. This matching amplitude is close to the motion, the motion mechanism for dichoptic presenta-
objective amplitude m, = 0.5 of grating s. For a "high- tions of our (second-order) stimuli would be sensitive to
spatial frequency grating v (w, = 7.4 c/deg), the match- the similarity of the textures involved. Thus, the contri-
ing amplitudes are m, = 0.54 for PW and M, 0.53 for JS. bution of what we call correspondence-channels might

The comparison of the matching amplitude with the be more pronounced when our competition schemes are
transition amplitude in the motion experiments, we have presented dichoptically (sofar viewing has been binocu-
also shown the probabilities to perceive heterogeneous lar in our experiments). We tested our energy-channel
motion using Scheme I as a function of m, in the model for motion-from-texture for both dichoptical and
corresponding panels. monocular presentations of our motion stimuli. This test

may also locate the motion extraction process involved
Discussion in our stimuli in terms of different levels in the visual

Interestingly, the matching amplitudes for low and nervous system (before or after the sites of binocular
high spatial frequency gratings are approximately equal combination).
to the objective amplitude of grating s, for the range of Results
amplitudes and spatial frequencies of grating v exam-
ined. That is. perceived amplitude does not depend on The ambiguous motion competition Schemes I and II
spatial frequency. However, the amplitude of grating v can be presented dichoptically in two different modes. In
for balancing the motion paths when cu, = 1.2 c/deg for the first mode, the odd frames are presented in one eye
Scheme I was: m, = 0.22 for subject PW and m, = 0 36 and the even frames in the other. In this way, the
for JS. Obviously, at the transition amplitude for the spatiotemporal stimulus is purely ambiguous in each eye.
motion experiment, the perceived amplitude of grating s Both the heterogeneous and the homogeneous path-- are
and v are markedly different. That is, the activities of the processed by dichoptic mechanisms. In this mode, di-
grating v are matched even when both spatial frequency choptic mechanisms are not competing with monocular
and perceived amplitude are different from grating s. In mechanisms.
conclusion, activity cannot be a function that depends In the second mode, the patches of one texture type
solely on perceived amplitude. are presented in one eye and the patches of the second

type of texture type are presented in one eye and the
EXPERIMENT 5: DICHOPTIC PRESENTATIONS patches of the second type of texture in the other eye. In

this way the homogeneous motion path (textures s for
A'otication Scheme I) is presented in one eye, while the textures v in

We have successfully modeled the strength of motion- the other eye form a purely ambiguous stimulus. In this
from-texture in terms of a texture grabber followed by mode, dichoptic mechanisms processing the hetero-
motion energy analysis. Motion energy analysis is a type geneous path have to compete with monocular mechan-
of motion computation that is not sensitive to correspon- isms processing the homogeneous path.
dences in textural features. An interesting property of We determined the psychometric functions for
first-order motion energy analysis is that the neural both competition schemes for a condition where the
substrate for such a process is organized so as to require texture s and v differ two octaves in spatial frequency
successive stimulation to the same eye. When monocular (co, - 4.9 c/deg and co, - 1.2 c/deg) for subject PW. The
motion information is not available to the observer binocular results were presented in top-left panel of
first-order motion energy analysis fails. Fig. 6. As discussed for Expts I and 2, a difference

The motion system that extracts first-order motion between the transition amplitudes p and •2 indicates the
information of both eyes (when motion is presented involvement of additional (correspondence) channels.
dichoptically) has been classified as a correspondence- The results for monocular presentation were identical
channel. For example, Pantie ahd Picciano (1976) stud- (within measurement error) to the results for binocular
ied apparent motion with a three-dot stimulus and presentation. For Ioth conditions, we find transition
reported element movement for monocular and binocu- invariance: u, -,U2 _ 0.2.
lar presentation, but group movement for dichoptic The results for both modes of dichoptic presentation
presentation. The group movement suggests a represen- were very similar to those for binocular presentation.
tation of features or shapes precedes the extraction of That is, dichoptic presentation yields psychometric
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functions. for Schemes I and II similar to those for constitutes a feature, and how strict should similarity be
binocular presentation. For adequate amplitude m, het- taken?
erogeneous motion dominated homogeneous motion for Recently developed stimulus (motion) energy models
both modes of dichoptic presentation suggesting the for motion extraction bypass the correspondence prob-
dominance of an energy-channel even when monocular lem and are more likely candidates for the kind of visual
motion information was absent. However, the contri- processing early in the visual system (Adelson & Bergen,
bution of a correspondence-channel is noticeable for 1985; Heeger, 1992). The energy-channel described in
dichoptic presentations: transition invariance no longer this paper is equivalent to such a motion energy compu-
holds. We found, :,-: 0.2 anduz:, 0.1 for both modes of tation, applied to a nonlinear transformation of the
dichoptic presentation. stimulus (van Santen & Sperling, 1984).

Discussion Contrast and motion
Motion perception between patches of nonsimilar In Expt 3, we showed that the transition amplitude of

texture is easily perceived for both modes of dichoptic texture v needed to balance the motion path s, v with the
presentation (as predicted by our energy-channel). Even motion path s, s varies linearly with the amplitude of
in the second mode, where a dichoptic heterogeneous texture s. In the context of our model, this means that
motion path competes with a monocular homogeneous the activity of a texture grabber is approximately linear
path, heterogeneous motion can easily dominate for in texture amplitude. In fact, we find linearity even for
small amplitude of texture v (e.g. m, > 0.2 for Scheme I). high amplitudes in the range of 50-100%. As a conse-
These results suggest that dichoptic processing of our quence of this amplitude linearity, motion strength
motion stimuli is dominated by the same mechanisms as varies linearly with the amplitude of each of the texture
monocular processing and that motion strength is not inputs. That is, the strength of motion between two
predicted by the similarity between textural features such textures with identical texture amplitude is quadratic
as spatial frequency. with this amplitude. Approximate amplitude linearity of

However, although dichoptic presentation leaves tran- the input lines for first-order motion energy analysis was
sition amplitude p, for Scheme I unaffected, transition p2 also found for experiments with spatiotemporal modu-
for Scheme II decreases. This difference from the binocu- lations of luminance Werkhoven et at. (1990b).
lar results indicates a significant contribution of other It should be noted, that the linear amplitude depen-
channels when monocular information for the hetero- dency is at odds with the ý.-nplitude thresholds for
geneous path is ambiguous. A more detailed investi- motion direction discrimination reported by Nakayama
gation might be useful. and Silverman (1985). They measured the smallest phase

shift (yielding threshold direction discrimination per-
GENERAL DISCUSSION formance) of sinusoidal gratings as a function of grating

amplitude. The smallest phase shift yielding threshold
Fallacy of correspondence matching performance leveled off for grating amplitudes exceeding

The experiments presented in this paper pro'6ide co- 5%. They interpreted their finding in terms of a ampli-
gent evidence that texture similarity is not relevant to the tude saturation function. However, their results are open
texture-defined motion computation (within the range of to a different interpretation in which the minimum phase
spatiotemporal parameters varied in this experiment). As shift is limited by other (spatial) properties of the motion
an example it was shown that motion between patches extraction mechanism leaving the amplitude dependency
of texture that differ by two octaves in spatial frequency unknown.
and a factor of 2 in amplitude can be stronger than
motion between patches of identical texture. A shared motion analysis stage?

The correspondence matching metaphor to explain An intriguing question is how mechanisms for the
visual processes in several visual doma/ins seems to have extraction of motion carried by the spatiotemporal
lost predictive power. Correspondence matching fails to modulation of luminance relate to those for extracting
explain the dominance of (I) heterogeneous motion motion carried by the spatiotemporal modulation of
paths composed of textures that differ in spatial fre- texture type. To discriminate both mechanisms we have
quency and amplitude (this paper), (2) heterogeneous to compare the characteristics of the perception of both
motion paths composed of elements that differ in size, motion types. For example, Turano and Pantie (1989)
orientation and luminance (Werkhoven et al., 1990a, b), studied velocity discrimination performance for both
and (3) stereoscopic matches between elements that types of motion stimuli and showed similar discrimi-
differ in size and luminance (Gulick & Lawson, 1976). nation characteristics. Their results support the hypoth-

The visual motion system does not seem to be de. esis of a higher order (motion analysis) mechanism that
signed to establish correspondetice between similar fea- accepts input from both the luminance domain as well
tures in a motion sequence. This should not come as a as texture domain.
surprise given the inherent difficulties in designing corre- A shared motion energy analysis stage for the two
spondence matching mechanisms. Such mechanisms types of motion is also supported by our finding that
would look for "similar features" in "successive" time strength of motion-from-texture is ruled by the same
samples of the spatiotemporal stimulus. However, what metric as motion in the luminance domain. Motion
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strength is the covariance (or product) of local activities, carried by differences in spatial orientation, although
This activity is simply the luminance itself when the differences in orientation did not produce as vigorous
motion is carried by luminance (van Santen & Sperling, motion as did differences in spatial frequency. This
1984) or a nonlinear transformation of the luminance observation indicates that orientation (and possibl.
pattern for motion-from-texture (this paper). other properties) are relevant to motion-from-texture- It

In conclusion, the extraction of motion from the would be interesting to determine the dimensionality of
spatiotemporal modulations of luminance and that of the computation for a larger class of stimuli.
texture types seems to be mediated by a shared motion Although motion strength at a "frame time" r of
energy analysis stage. However, additional experiments 8/60 sec is exclusively determined by the product of
vith different paradigms may weaken this idea. For activities, we can not exclude that effects of texture
example, Mather (1991) showed that both motion types similarity are stronger at longer frame time. In fact. the
produce motion after effects, but that the duration of the temporal frequency of texture modulation in our exper-
aftereffects were significantly different. iments is 1.9 Hz (one cycle consists of four frames c.

133 msec each). At slower temporal frequencies. the
Transitivity and additivit~v processing time for the textures increases, perhaps en-

T i abling more elaborate "texture grabber" filters or corre-
Under the assumption of energy channels and channel spondence-channels to contribute to motion strength.

summation, the transition invariance of a pair of tex- Effects of other properties (e.g. orientation) and tem-
tures s and v implies that s and v are (texture-defined) poral parameters are currently under investigation.
motion metamers. That is. all such textures v in this
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tuned to identical velocities but Opposite directions are subtracted to_
yield a net motion strength D9,(, t: T

(14) VT

Channel i has a positive output for motion in the direction of (a) (b)
positive o and a negative output for motion in the opposite direction.

Summation. In a one-dimensional motion computation. the outputs FIGURE 14. Solutions for transitions (path equality) in a two-dimen-
of a system of energy-channels described above (represented in an , sional T-space. Each texture in a motion path is processed by different
dimensional channel space) are essentially mapped to a single (de- texture grabbers. Vector 7'. represents the activity of texture v in
cision) dimension: the final net motion strength. This mapping maps T-space, vector T, that of s. The collection ot activity vectors 7. that
an (n - 1)-dimensional manifold in the channel space to a single point satisfy the constraints for path equality are given by the thin line in (a)
in the one-dimensional decision space (final motion strength). For for Scheme I and by a thin circle in (b} for Scheme II.
example, channel summation maps a planar surface in the channel
space to zero final motion strength (for Scheme 1). For other combi-
nation rules than summation, other (nonplanar) surfaces will map to
zero fn motion strength. However, when we assume that this Transiuions: Scheme I
mapping is continuous and differentiable, these true manifolds are in
first order approximated by a planar surface for small channel signals
at transition points. Channel summation is a sufficient first-order
combination rule. D. ,(t,-7")0. (21.

Summation of channels D, yields net motion strength D:

There exists an (n - I)-dimensional plane of 7, vectors in T-space
D(p, t) D,(, . ( fo) tr which the motion strength of the heterogeneous and homogeneous

,. I motion paths ame balanced (the vectors 7, for which the difference
vector T, - 7• are orthogonal to vector 7;).

Consider, for example. a two-dimensional T-space (a two-channel
Predictions for competition schemes motion computation). The vectors 7, in T-space that satisfy equation

We apply the multi-channel computation to competition Schemes 1 (21) for a certain vector 7P, must end on the thin guide line in Fig. 14(a j.
and It (see Figs 3 and 4). Consider first Scheme I. The hetero. It should be noted in passing, that the net heterogeneous motion
geneous path is the motion between texture s (at time I- At and strength D, - 7,. -M - T,) can be positive. Hence. even in a multi-
position v - Ai) and texture v (at time t and position i). Let T,, be channel computation, the strength of the heterogeneous motion path
the activity of texture grabber T, for texture s, and T,, the activity can dominate.
of texture grabber T, for texture v. The output of channel i for this
path is the product of the delayed activity Tu of texture s and the Transitions: Scheme H1
current activity T•, of texture v. For simplicity, we will use the vector
notation: Similarly, at a transition for Scheme II (Fig. 4). the net motion

strength D2 is zero:

[k: Da ~-7; 7 )0. (22)
"- [] and 7,,- . (16)

The (n - 1)-dimensional solution of 1', vectors in T-space for which
r the motion strength of the heterogeneous and homogeneous motion

The vectors T, and 7, are the activity vectors of textures s and v paths are balanced is not a plane For example, we consider again the
respectively. An activity vector represents the activity of a texture in two-dimensional T-space. The vectors 7", in T-space that satisf"
the n-dimensional transformation space (T-space) defined by trans- equation (22) for a certain vector 7", end on a circle containing 7, is-e
formations T, ..T,. Fig. l4(b)].

For Scheme 1. the motion strengths St, summed over all channels
for the heterogeneous path can be written as the vector product: TrwIdnsitioWtabNCe

4 Using only the result for Scheme L we cannot discriminate between
S 1h I,', - T T ,. (17) a single-channed (n - 1) and multi-channel computations (n > , .

either single- or multi-channel computations might yield solutions to
We have arbitrarily assigned a positive sign to motion strength in this equation (21). To resolve the issue, we need the constraint of transition
direction. Motion in the opposite direction has a negative sign [see invariance.
equation (14)). The output of channel i for the homogeneous path Transition invariance means that once the motion strength of the
(between textures s) is the squared output of transformation Tu. 1hw heterogeneous path and that of the homogeneous motion path are
motion strength Si.,. of the homogeneous path is (after summing all balanced for a particular pair of textures s and v for Scheme 1. this
channels) is: balance is not disturbed by interchanging the textures s and v (yielding

Scheme 11). We now show that transition invariance is inconsistent
Si.b" - 7" . (18) with a multi-channel computation.

The transitions are invariant if the activity vector 7, simultaneouslyAdd;ng equations (6) and (7) gives the net motion strength D, in the satisfies equations (21) and (22). Because the difference vector 7, - f"
direction of the heterogeneous path for Scheme 1: is always in the plane defined by vector 7, and vector 7',, the only

(19)oP , that satislies both equations is ', - P,.
D, - (' ,).(19) Vector t', is equal to vector t, if each transformation T, involved

Analogously, the net motion strength D 'm the direction of the in the motion computation has an equal output for both textures v

heterogeneous path for Scheme il is: and s:

, - ,. ('- . (20) - , - ). (23)
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Equation (23) represents a vety strong constraint for the ensemble texture pairs (a, v); the iso-activity contours of each transformationOf transramaltions that might be involved in a multi-chanieJ cor. T, must be identical for all thes paim Transformauons that areputation. Every tnsformation T, must have an isoacuvity contour identical at arbitrarily many observable points. are identical in theas a function of all textural properties (e.g. frequency-amplitude ranp of observable points. To say that all T, are identical is equivalentspace) that contains both the activity of texture s and that of to saying that there is only one 7,, that is, the T-space is one-dimen-texture v. Furthermore. transition invariance holds for different sional.
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(a) L stadard(a) L[x,yt] -
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Fig. 3. Fourier and nonFourier motion mechanisms. (a) Fourier motion mechanisms apply standard
motion-analysis directly to the luminance signal L. (b, c, d) NonFourier mechanisms apply standard
motion analysis to a nonlinear transformation of luminance. (b) A simple nonFourier mechanism applies a
signal transformation comprised of a spatiotemporal linear filter, followed by a pointwise nonlinearity. The
* 's indicate spatial a&,d temporal convolution, respectively, and 9 indicates multiplication. The filtering
performed in (b) is rovq'y pointwise in time (the temporal impulse response b2 approximates an impulse),
and the nonlinearity applied is a full-wave rectifier. This system (with appropriately chosen spatial filter,
bl) will extract the motion of the texture quilts shown in Figs. 4b, 5d, 6c, and 6d. It will not extract the
motion of stimulus J, the traveling contrast-reversal of the random vertical bar pattern shown in Fig. 2a.
(c) A spatially pointwise (the spatial impulse response cl approximates an impulse), system with a flicker-
sensitive temporal filter and a full-wave rectifier. Because of the flicker sensitivity, this mechanism will
extract the motion of the taveling contrast-reversal of the random vertical bar pattern shown in Fig. 2a but
not the motion of the texture quilts shown in Figs. 4b, 5d, 6c, and 6d. (d) The temporal filter d2 averages
the temporal filters b2 and c2, and the pointwise nonlinearity is a full-wave rectifier. With an appropriate
spatial filter dl, ths nonFourier system extracts the motion of any corresponding texture quilt as well as the
motion of the traveling contrast-reversal of the random vertical bar pattern shown in Fig. 2a. However, it
would be less well-suited to these tasks than the detectors shown in (b) and (c) whose temporal filters it
averages.
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OBJECT SPATIAL FREQUENCIES, RETINAL SPATIAL
FREQUENCIES, NOISE, AND THE EFFICIENCY OF

LETTER DISCRIMINATION

DAvID H. PA•mH and GEOROE SPuLNGo
Human Information Processing Laboratory, Department of Psychology and Center for Neural Sciences.

New York University. NY 10003. U.S.A.

(Received 7 July 198A,- in revised form 2 June 1990)

Abstract-To determine which spatial frequencies are most effective for letter identification, Wn whether
this is because letters am objectively more discriminable in these frequency bands or becaus•an utilize
the information more efficiently, we studied the 26 upper-case letters of English. Six two-octave wide filters
were used to produce spatially filtered letters with 2D-mean frequencies ranging from 0.4 to 20 cycles per
letter height. Subjects attempted to identify filtered letters in the presence of identically filtered, added
Gaussian noise. The percent of correct letter identifications vs s/n (the root-mean-square ratio of signal
to noise power) wis determined for each band at four viewing distances ranging over 32: 1. Object spatial
frequency band and sin determine presence of information in the stimulus; viewing distance determines
retinal spatial frequency, and affects only ability to utilize. Viewing distance had no effect upon letter
discriminability: object spatial frequency, not retinal spatial frequency, determined discriminability. To
determine discrimination efficiency, we compared human discrimination to an ideal discriminator. For our
two-octave wide bands, s/n performance of humans and of the ideal detector improved with frequency
mainly because linear bandwidth increased as a function of frequency. Relative to the ideal detector,
human efficiency was 0 in the lowest frequency bands, reached a maximum of 0.42 at 1.5 cycles per object
and dropped to about 0.104 in the highest band. Thus, our subjects best extract upper-case letter
information from spatial frequencies of 1.5 cycles per object height, and they can extract it with equal
efficiency over a 32:1 range of retinal frequencies, from 0.074 to more than 2.3 cycles per degree of visual
angle.

Spatial filtering Scale invariance Psychophysics Contrast sensitivity Acuity

INTRODUCTION An issue that is related to the lowest fre-
Characterizing objects quency band that suffices for recognition is the

encoding economy of a band. For a filter with
When we view objects, what range of spatial a bandwidth that is proportional to frequency
frequencies is critical for recognition, and how (e.g. a two-octave-wide filter), the lower the
is our visual system adapted to perceive these frequency, the smaller the number of frequency
frequencies? Ginsburg (1978, 1980) was among components needed to encode the filtered image
the first to investigate this problem by means of of a constant object. Combining these two
spatial bandpass filtered images of faces and notions, Ginsburg concluded that objects were
lowpass filtered images of letters. He noted the best, or most efficiently, characterized by the
lowest frequency band for faces and the cutoff lowest band of spatial frequencies that sufficed
frequency for letters at which the images seemed to discriminate them. Ginsburg (1980) went on
to him to be clearly recognizable. The cutoff to suggest that higher spatial frequencies were
frequency for letters was 1-2 cycles per letter redundant for certain tasks, such as face or
width; faces were best recognized in a band letter recognition.
centered at 4 cycles per face width. He also Several investigators were quick to point out
proposed that the perception of geometric visual that objects can be well discriminated in various
illusions, such as the Mueller-Lyer and Poggen- spatial frequency bands. Fiorentini, Maffei and
dorf, was mediated by low spatial frequencies Sandini (1983) observed that faces were well
(Ginsberg, 1971, 1978; Ginsberg & Evans, recognized in either high or in lowpass filtered
1979). bands. Norman and Erlich (1987) observed that

high spatial frequencies were essential for dis-
*To whom reprint requests should be addressed. crimination between toy tanks in photographs.
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With respect to geometric illusions, both Janez sight, and to the impossibility of peripherally
(1984) and Carlson, Moeller and Anderson previewing new text.
(t984) observed that the geometric illusions While viewing distance changed the overall
could be perceived for images that had been level of performance in Legge et al., the cutoff
highpass filtered so that they contained no object frequency of their low-pass filters at
low spatial frequencies. This suggests that low which performance asymptoted did not change.
and high spatial frequency bands may carry From this study, we learn that reading rate can
equivalently useful information for higher visual be quite independent of retinal frequency over a
processes. fairly wide range, and that dependence on criti-

cal object frequency does not depend on viewing
Characterizing the visual system distance. Because the authors measured reading

rate only in lowpass filtered images, we cannot
In te studi es ct a boet scusion f infer reading performance in higher spatial fre-

spatial filtering focuses on object spatial re-bands from their data.
quencies, that .is, frequencies that are defined in
terms of some dimension of the object they Unconfounding object statistics and visual system
describe (cycles per object). Most psychophysi- properties
cal research with spatial frequency bands has Human visual performance is the result of the
focused on retinal spatial frequencies, that is, Human vis ormane isethelt the
frequencies defined in terms of retinal coordi- combined effects of the objectively available

nats. or xamlethespaialconras sesi-information in the stimulus, and the ability of
nates. For example, the spatial contrast sensi- humans to utilize the information. In studying
tivity function (Davidson, 1968; Campbell & visual performance with differently filtered im-
Robson, 1968) describes the threshold sensi-
tivity of the visual system to sine wave gratings ages, it it critical to separate availability from
as a function of their retinal spatial frequengs ability to utilize. For example, narrow-band

cy. images can be completely described in terms
Visual system sensitivity is greatest at 3-10 of a small number of parameters-Fourier
cycles per degree of visual angle (c/deg). How coefficients or any other independent descrip-
does visual system sensitivity relate to object tors-than wide-band images. Poor human
spatial frequencies? performance with narrow-band images may

reflect the impoverished image rather than
Unconfounding retinal and object spatial an intrinsically human characteristic-an ideal

frequencies observer would exhibit a similar loss.

Retinal spatial frequency and object spatial The problem of assessing the utility of stimu-
frequency can be varied independently to deter- lus information becomes acute in comparing
mine whether certain object frequencies are best human performance in high and in low fre-
perceived at particular retinal frequencies. Ob- quency bandpass filtered images. Typically,
ject frequency is manipulated by varying the filters are constructed to have a bandwidth
frequency band of bandpass filtered images; proportional to frequency (constant bandwidth
retinal frequency is manipulated by varying the in terms of octaves). For example, Ginsburg
viewing distance. (1980) used faces filtered into 2-octave-wide

The cutoff object spatial frequency of lowpass bands; while Norman and Ehrlich (1987) also
filters and the observer's viewing distance were used 2-octave bands for their filtered tank pic-
varied independently by Legge, Pelli, Rubin and tures. With such filters, high spatial frequency
Schleske (1985) who studied reading rate of images contain more independent frequencies
filtered text at viewing distances over a 133:1 than low frequency images.
range. Over about a 6:1 middle range of dis- Although linear bandwidth represents per-
tances, reading rate was perfectly constant, and haps the important difference between images
it was approximately constant over a 30:1 filtered in octave bands at different frequencies,
range. At the longest viewing distances, there the informational content of the various bands
was a sharp performance decrease (as the also depends critically on the nature of the
letters became indiscriminably small). At the specific class of objects, such as faces or letter.
shortest viewing distance, performance de- Obviously, determining the information content
creased slightly, perhaps due to large eye move- of images is a difficult problem. When it is not
ments that the subjects would have to execute solved, the amount of stimulus information
to bring relevant material towards their lines of available within a frequency band is confounded
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with the ability of human observers to use the Specifically, to determine the roles of object
information. Direct comparisons of perform- and retinal spatial frequencies, letters are
ance between differently filtered objects are filtered into various frequency bands. Noise is
inappropriate. This distinction between objec- added, and the psychometric function for cor-
tively available stimulus information and the rect identification is determined as a function
human ability to use it has not been adequately of s/n. AccuracyAepends only on s/n and not on
posed in the context of spatial bandpass overall contrast, for a wide range of contrasts
filtering. (Pavel, Sperling, Riedl & Vanderbeck, 1987).

This determination is repeated for every combi-
Efficiency nation of object frequency band and viewing

In the present context, physically available distance. Thereby, retinal spatial frequency
information is best characterized by the per- and object spatial frequency are unconfounded,
formance of an ideal observer. If there were no enabling us to determine whether a particular
noise in the stimulus, the ideal observer would object frequency band is better discriminated
invariably respond perfectly. To compare the in one visual channel (retinal frequency) than
performance of an observer, human or ideal, any other (Parish & Sperling, 1987a, b). More-
noise of root-mean-square (r.m.s.) amplitude n over, by computing an ideal observer for the
is progressively added to the signal of r.m.s. identification task, we obtain an objective
amplitude s until the performance is reduced to measure of the information that is present in
some criterion, such as 50% correct in a letter each of the frequency bands. Finally, the com-
identification task. This defines the signal to parison of human performance with the per-
noise ratio, (s/n),, for a criterion c. Efficiency eff formance of the ideal observer gives us a precise
of human performance is defined by: measure of the ability of our subjects to utilize

the information in the stimulus. Having
eff= (..-l/Ill untangled these factors, we can determine which

\nJC I Ch/e spatial frequencies most efficiently characterize
where h and i indicate human and ideal observ- letters for identification.
ers, and s and n are r.m.s. signal and noise
amplitudes (Tanner & Birdsall, 1958). In a pure, METHOD
quantally limited system, efficiency actually
represents the fraction of quanta absorbed Two experiments were conducted using simi-
(utilization efficiency). In the context of signal lar stimuli and procedures.
detection theory, efficiency is given by a d' ratio: Stimuli

eff = (dk/dd. Letters (signals) and noise. The original,
unfiltered letters were selected from a simple

Overview 5 x 7 upper-case font commonly used on CRT

For an object that contains a broad spectrum terminals. Since this is an experiment in pattern
of spatial frequencies, object spatial frequency is recognition, we felt that the simplest letter pat-
determined by the center frequency of a spatial tern might be the most general; indeed, this font
bandpass filtered image. Retinal spatial fre- has been widely used in letter discrimination
quency is determined by the viewing distance at studies. For the purpose of subsequent spatial
which the stimulus is viewed. Stimulus infor- filtering, the letters were redefined on a pixel
mation is determined jointly by the signal-to- grid that measured 45 (vertical height) x 35
noise ratio, by the spatial filtering, and by the (maximum horizontal extent of letters M and
characteristics of the set of signals; these three W). The letters had value I (white); the back-
informational components are combined in the ground had value 0 (black). To avoid edge
efficiency computation. Letters are a convenient effects in filtering, the background was extended
stimulus to study because they are highly over- to 128 x 128 pixels for all computations. How-
learned so that human performance can be ever, only the center 90 x 90 pixels of the stimu-
expected to be reasonably efficient, and because lus were displayed, as these contained effectively
much is already known about the visibility of all the usable stimulus information, even for
letters in the presence of internal noise (letter low spatial-frequency stimuli. Letters for pres-
acuity) and about the visual processing of entation were chosen pseudo-randomly from
letters. the set of 26 upper-case English letters. Noise
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Table I. Parameters of the bandpass filters: lower and upper cyctas/fk l
half.amplitude frequencies, peak, and 2D mean frequencies 1 c 4 a Is32 64

in cycles/letter height 1.0

Band Lower Peak Upper Mean'

0 0 Lowpass 0.53 0.39
1 0.26 0.53 1.05 0.74 o.a
2 0.53 L.0S 2.11 1.49
3 !1.05 2.11 4.22 2.92 Q4

4 2.11 4.22 . 8.44 5.77
5 6.33 Highpass 22.5 20.25 02

'Frequencies are weighted according to their squared ampli-
tude (power) in computing the mean. 0o.3 o.00 1A LIS 5.6 11.2 ZP4

CyciLs/Lattw eight
fields were defined on a 128 x 128 array by Fig. 1. Filter charactensucs for the filters used in the

choosing independent Gaussian noise samples experiments. There are two abscissas, both on a log scale.
for each pixel, with the mean equal to zero and The top abscissa is the frequency in cycles per unwindowed
a variance or2 as required by the condition. (As field width (128 pixels); the bottom abscissa is in cycles per

with the letters, only the central 90 x 90 pixels letter height (45 pixels). The ordinate is the normalized pin.
were displayed.) Forty different noise fields were The parameter i indicates the filter designation b, in the text.

created.
Filters. Each stimulus consisted of a filtered is much greater than the mode. In a 2D (vs ID)

letter added to an identically filtered noise field, filter, the rightward shift is accentuated. For
Six spatial filters were available, corresponding example, band 2 has a peak frequency of 1.05
to six successive levels of a Laplacian pyramid c/object but a 2D mean frequency of 1.49
(Burt & Adelson, 1983). The zero-frequency c/object. The single most informative character-
component was added to the images so that they ization of such a skewed bandpass spectrum
could be viewed. The object-relative filter depends somewhat on the context; usually use
characteristics, upper and lower half-amplitude the mean rather than the peak.
cutoff and 2D mean frequency (cycles per Figure 2 (top) shows the letter G, filtered in
letter height), appear in Table 1. The 2D mean bands I-5 without noise; the bottom shows the
frequency I for a given band is: same signals plus noise, s/n = 0.5. The full

127 121 128 x 128 array (extended by reflection beyond
= : its edges) was passed through the filter so that

-oY.0 -0 the effect of the picture boundary did not
where fl., is the 2D frequency and a,, is its intrude into the critical part of the display.
amplitude. Cycles per object height is used Signal to noise ratio, s/n. A filtered letter is a

rather than the more usual cycles per object signal. Let i,j index a particular pixel in the x, y
width because the height of our upper-case coordinate space of the stimulus. The signal
letters remained constant across the entire set, contrast c,(i,j) of pixel i,j is:
whereas the width varied between letters. V YiD - o)

The transfer functions (spectra) of the filters c,(i,j) = 10 (1)
are displayed in Fig. 1. Approximately, filters
are separated in spatial frequency by an octave where lI. is the luminance of pixel i, j and 4 is
(factor of 2) and have a bandwidth at half- the mean signal luminance over the 90 x 90
amplitude of two octaves. The small mound in array. Signal power per pixel, s, is defined as
the lower right corner of Fig. I is a negligible mean contrast power averaged over the 90 x 90
imperfection in filter 4. For convenience, the pixel array:
limited range of spatial frequencies passed by ii
each of the filters will be referred to as the band s = (iJ)' I E c,(ij)2  (2)
of that filter; a specific band is b, (i = 0, 1, 2, 3, # J
4, 5), where b0 is the lowest set of frequencies where c,1 is the contrast of pixel i, j and
and bs is the highest. I = J = 90.

The filter spectra (shown in Fig. 1) are Noise contrast c.(i,j) is the value of the i,jth
approximately symmetrical in log frequency noise sample divided by the mean luminance.
coordinates, a symmetrical spectrum in log co- Analogously to signal power (equation 2), noise
ordinates is highly skewed to the right in linear contrast power per pixel, n, is equal to (6/4)y.
frequency coordinates, resulting in a mean that The signal to noise ratio is simply s/n.
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Quantization. Our display system produced upper and lower half-amplitude cut-off retinal
256-discrete luminance levels. Level 128 was frequencies for the upper six filters, with respect
used as the mean luminance 10; 4 was to the four viewing distances used in this exper-
47.5 cd/M2. To produce a visual display of a iment, and for a fifth distance used in the second
given letter, band, and s/n, signal power s and experiment, appear in Table 2. Subjects partici-
noise power n were normalized so that the pated in four I-hr sessions at each viewing
luminance of every one of the 8100 displayed distance. Each session consisted of 315 trials,
pixels fell within the range of the display system; nine trials at each of seven sin's for each of the
there was no truncation of the tails of the five frequency bands.
Gaussian noise. (Although the relationship be- Prior to the first session, subjects were shown
tween input gray-level and output luminance noise-free examples of the unfiltered letters.
was not quite linear at the extreme intensity They were told that each stimulus presentation
values, it was determined that more than 90% consisted of a letter and a certain amount of
of the pixels fell within the linear intensity noise, and that the letter may appear degraded
range.) Intensity normalization was applied sep- in some way. They were informed that at no
arately to each stimulus (combination of signal time would a letter be shifted in orientation or
plus noise). By normalizing the total stimulus from its central location in the stimulus field.
s + n, the actual value of s displayed to the Finally, they were instructed to view each stimu-
subject diminished as n increased; i.e. the actual lus for as long as they desired before making
value of s was not known by the subject. Indeed, their best guess as to which letter had been
even stimuli with precisely the same letter in the presented. A response (letter identity) was
same band and with the same s/n might be required on every trial. Subjects typed the
produced with slightly different s and n depend- response on a keyboard connected to the host
ing on the extreme values of the noise fields, computer (Vax 11/750); subsequently, typing a

Seven values of s/n were available for each carriage return erased the video screen and
band, chosen in a pilot study to insure that the initiated the next trial in a few seconds. The
data yielded the entire psychometric function room illumination was very dim; the response
(chance to best performance). The same pilot keyboard was lighted by stray light from its
study showed that subjects never performed associated CRT terminal. No feedback was
above chance when confronted with noise-free offered to the subjects.
letters from b0; this band was omitted from the
present study. Observers

Three subjects, two male and one female,
Procedure: experiment ! between the ages of 20 and 27 participated in the

Four of the experimental variables-letter experiment. All subjects had normal or cor-
identity, noise field, frequency band, and s/n- rected-to-normal vision. One of the subjects was
were randomized within each session. A fifth a paid participant in the study.
variable, viewing distance, was held constant
within each session and was varied between Procedure: experiment 2

sessions. Four viewing distances were used: This experiment was run before expt I. It is
0.121, 0.38, 1.21 and 3.84 m. A chin rest was reported here because it offers additional data
used to stabilize the subject's head for viewing with two new and one old subject at a fifth
at the shortest distance. At the four distances, viewing distance. Except as noted, the pro-
the 90 x 90 pixel stimulus subtended 31.6, 10, cedures are similar to expt I. The screen was
3.16 and 1.0 deg of visual angle respectively. The viewed through a darkened hood at a distance

Table 2. Lower and upper half-power frequency and 2D mean frequency (in c/deg of visual angle) for all bands and viewing
distances used in both experiments

Viewing distance (m)
Band 0.12 0.38 1.21 3.84 0.48

0 (0owpass) 0.00-0.04 (0.03) 0.00-0.12 (0.09) 0.00-0.37 (0.27) 0.00-1.18 (0.87) 0.00-0.15 (0.1I)
I 0.02-0.07 (0.05) 0.06-0.23 (0.16) 0.18-0.74 (0.52) 0.58-2.34(l.65) 0.07-0.29 (0.21)
2 0.04-0.15 (0.10) 0.12-0.47(0.33) 0.37-1.48(1.04) 1.18-.4.70(3.30) 0.15-0.59 (0.41)
3 0.07-0.30(0.20) 0.23-0.94(0.64) 0.74-2.97 (2.04) 2.34-9.40(6.48) 0.29-1.18(0.81)
4 0.13-4.59(0.40) 0.47-1.88(1.27) 1.48-5.94 (4.04) 4.70-18.80(12.82) 0.59-2.36(1.60)

S (highpass) 0.30-2.25 (1.41) 0.94-7.13(4.45) 2.97-22.53(14.19) 9.40-71.27(45.00) 1.77-8.96 (5.63)
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of 0.48 m. At this distance, the 90 x 90 stimuli The complete psychometric functions are dis-
subtended 7.15 deg of visual angle. The half- played in Figs 3 (expt 1) and 4 (expt 2). A
amplitude cut-off frequencies and the mean separate psychometric function is shown for
frequencies of the six spatial filters are given in each subject, viewing distance and frequency
the rightmost column of Table 2. Three male band. In band b,, for all subjects, performance
subjects between the ages of 20 and 27 par- asymptotes (for noiseless stimuli) at p _ 0.5. In
ticipated in the experiment. All subjects had all other bands, performance improves from
normal or corrected-to-normal vision. Two of near-chance (1/26) to near perfect as the value
the subjects were paid for their participation, of s/n increases.
and one, DHP, also participated in expt i. Five
sessions of 315 trials were run for each subject. Noise resistance as a function of frequency band

RESULTS An obvious aspect of the data of both exper-
iments is that the data move to the left of the

Psychometric functions:.6~ vs log,0 s/n figure panels as band spatial frequency in-

The measure of performance is the observed creases. This means that high spatial frequency
probability P3 of a correct letter identification. stimuli (bands b4, b5) are identifiable at smaller

1.0 dhp 5 cld 5 mav 5

0.75 -

0.50 -

0.25 1

1.00
dhp4 cld 4 mav 4

0.75

0.50 -

0.25

1.00

dhp3 cid 3 mav 3
t 0.75
0

0.50

0.25

CL 1.00 I

dhp1 cJd 2 mov 2
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0.50

0.25 

--
1.00

odhp I dI mavI

0.50

0.25

0
-3.0 -2.0 -1.0 0 cO -2.0 -1.0 0 OD -2.0 -1.0 0 00

LogI 0 SIN

Fig. 3. Psychometric functions from expt I. Each graph displays performance as a function of logO s/n,
within a frequency band. The parameter is viewing distance. Subjects are arranged in columns and
frequency band is arranged in rows, progressing from the highest frequency band at the top to the lowest
band at the bottom. The four viewing distances are 3.84 (0). 1.21 (&), 0.38 (0). and 0.121 (0) m.
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1.00 0.32 046 1.00 1.76 16 5.62 10.0 17 31.6

20 Momi frequncy (cYCtss/Leott hoo~t)

S0.75 Fig. 5. Performance of human subjects and various compu-
tational discriminators. The abscissa indicates logo of the

to mean frequency of each bandpass stimulus. The ordinate
_ .S0 indicates the (interpolated) s/n ratio at which a probability

of a correct response p - 0.5 is achieved. Circles indicate
" f,,25 each of the three subjects in expt I at the intermediate

CL viewing distance of 1.21 m. In band bl, 2 of 3 human
1.00 subjects fail to achieve 50% correct (eff - 0); these points le

.0outside the gpaph. (A) indicates sub-ideal and (0) indicates

super-ideal performances of discriminators that brackets the

0.75- ideal discriminator. The shaded area below the super-ideal
discriminator indicates theoretically unachievable perform-

dhp .• ance. Squares indicate performance of a spatial correlator-
0.S0 discriminator. The oblique parallel lines have slope - I that

represents the improvement in expected performance
0.25 (decrease in s/n) as function of the number of frequency

components in each band when filter bandwidth is

0 • proportional to frequency.

.3.0 -2.0 -1.0 0 CO

Log0oS/N The non -effect of viewing distance

Fig. 4. Psychometric functions for each subject and fre- Another property of the data is that, in most
quency band in expt 2. Viewing distance was 0.48 m. The conditions, viewing distance has no effect on
five frequency bands, b1-bs, are indicated, respectively, by
0. 0, A& 0 and +. The probability of a correct response performance. Analysis of variance, carried out

is plotted as a function of log,, sin. individually for each subject, shows that there is
no significant effect of distance in any band for
subject dhp and a significant effect of distance in

s/n than stimuli in bands b, and b2; resistance to bands b4 and b, for the other two subjects.
noise increases with spatial frequency band. To Further analysis by a Tukey test (Winer, 1971)
enable comparisons of noise sevitivity as a in bands b4 and bs for these subjects shows that
function of b~nd, the s/n at which P = 50% was the only significant effect of distance is that
estimated for each subject and frequency band visibility at the longest viewing distance is better
from expt I by means of inverse interpolation than at the other three distances. For subject
from the best fitting logistic function. As view- CJD, the improvement is equivalent to a gain in
ing distance had no effect, all estimates were s/n of 0.19 and 0.28 log,0 (for bands b, and bs,
made using the data collected when viewing respectively); for MAV, the corresponding gains
distance was equal to 0.38 m. A graph of these were 0.21 and 0.40.
(s/n),.•. points as a function of the mean object Improved performance at long viewing dis-
frequency of the band is plotted in Fig. 5 (0). tances is almost certainly due to the square
For comparison, the expected rate of improve- configuration of individual pixels, which pro-
ment in (s/n)se%, based on the increasing num- duces a high frequency spatial pixel noise that is
ber of frequency components as one moves from attenuated by viewing from sufficiently far away
low to high frequency bands, is plotted as a (Harmon & Julesz, 1973). In low frequency
series of parallel lines in Fig. 5. Performance bands, pixel-boundary noise is not a problem
improves [(s/n)", decreases] somewhat faster because the spatial filtering insures that adjacent
than 1/f (the slope of the parallel lines). These pixels vary only slightly in intensity. We ex-
results, and Fig. 5, will be analyzed in detail in plored the hypothesis of pixel-boundary noise
the Discussion section. with subject CJD, who showed a distance effect
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in band 5. At an intermediate viewing distance Ideal discriminator
of 1.21 m, CJD squinted her eyes while viewing
stimuli from band 5. By blurring the retinal Definition. An ideal discriminator makes the
image of the display in this way, performance best possible decision given the available data
improved approximately to the level of the and the interpretation of "best." The perform-
furthest viewing distance. ance of the ideal discriminator defines the objec-

To summarize, the only significant effect of tive utility of the information in the stimulus.
distance that we observed was a lowering of We prefer the name ideal discriminator, rather
performance at near viewing distances relative than ideal observer, because it indicates the
to the furthest distance. This impairment critical aspect of performance under consider-
occurred primarily in bands 4 and 5. In these ation, but we occasionally use ideal observer to
bands, the spatial quantization of the display emphasize the relations to a large, relevant
(90 x 90 square-shaped pixels) produces arti- literature on this subject. Our purposes in this
factual high spatial frequencies that mask section are first, to derive an ideal discriminator
the target. These artifactually produced spatial for the letter identification task, second, to
frequencies can be attenuated by deliberate develop a practical working approximation to
blurring (squinting), or by producing displays this discriminator, and third, to compare the
with higher spatial resolution, or by increasing performance of the human with the ideal dis-
the viewing distance to the point where the pixel criminator.
boundaries are attenuated by the optics of the Although ideal observers have recently come
eye and neural components of the visual modu- into greater use in vision research, the appli-
lation transfer function. In all cases, blurring cations have focused primarily on determining
improves performance and eliminates the the limits of performance for relatively low-level
slightly deleterious effect of a too small viewing visual phenomena. For example, Barlow (1978,
distance. Thus, for correctly constructed stim- 1980), and Barlow and Reeves (1979) investi-
uli, in the frequency ranges studied, there would gated the perception of density and of mirror
be no significant effect of viewing distance on symmetry; Geisler (1984) investigated the limits
performance. This finding is in agreement with of acuity and hyperacuity; Legge, Kersten and
the results of Legge et al. (1985), who examined Burgess (1987) examined the pedestal effect;
reading rate rather than letter recognition. It is Kersten (1984) studied the detection of noise
in stark disagreement with the results of patterns; and Pelli (1981) detailed the roles of
sinewave detection experiments in which retinal internal visual noise. Geisler (1989) provides an
frequency is critical-see Sperling (1989) for an overview of efficiency computations in early
explanation. vision. Our application differs from these in that

we expand the techniques and apply them to

DISCUSSION a higher perceptual/cognitive function, letter
recognition.

A comparison of performance in different For the letter identification task, the ideal
frequency bands shows that subjects perform discriminator is conceptually easy to define. A
better the higher the frequency band; and sub- particular observed stimulus, x, representing an
jects require the smallest signal-to-noise ratio unknown letter plus noise, consists of an inten-
in the highest frequency band. To determine sity value (one of 256 possible values) at each of
whether performance in high frequency bands is 90 x 90 locations. The discriminator's task is to
good because humans are more efficient in make the correct choice as frequently as possible

utilizing high-frequency information, or because from among the 26 alternative letters.
there is objectively more information in the The likelihood of observing stimulus x, given
high-frequency images, or both, requires an each of the 26 possible signal alternatives, can
investigation of the performance of an ideal be computed when the probability density func-
observer. The performance of the ideal observer tion of the added noise is known exactly. The
is the measure of the objective presence of optimal decision chooses the letter that has the
information. Human performance results from highest likelihood of yielding x. The expected
the joint effect of the objective presence of performance of the ideal discriminator is com-
information and the ability of humans to utilize puted by summing its probability of a correct
that information. Human efficiency is the ratio response over the 25611® possible stimuli (256
of human performance to ideal performance. gray levels, 90 x 90 pixels). Unfortunately,
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Fig. 6. Flow chart of the experimental procedures that are modelled by the ideal discriminator analysis.
Upper half indicates space-domain operations; lower half indicates the corresponding operations in the
frequency domain. Computations are carried out on 128 x 128 arrays; the subject sees only the center
90 x 90 pixels. A random letter and a random noise field are each filtered by the same filter (b); the noise
is amplified to provide the desired signal-to-noise ratio; the letter and noise are added, the output is scaled
and quantized (represented by the addition of digitization noise), and the result is shown to the subject.
In the frequency domain o,, w,, the bandpass filter selects an annulus, whereas the quantization noise

is uniform over ow, w,.

when there is both bandpass filtered and inten- indicates the particular letter, b the frequency
sity quantization, the usual simplifications that band, and xy the pixel location. We write
make this enormous computation tractable are TL4(AO, O,) for the Fourier series coefficient of
not applicable. t ab indexed by frequency.

As an alternative to computing the expected An unknown stimulus uKA(x,y) to be viewed
performance of the ideal discriminator, one can by a subject is produced by adding filtered
compute its performance with a particular sub- nb(x,y) with post-filtering variance a', to the
set of the possible stimuli-the stimuli that.the template t4b(x,y), where letter identity i is un-
subject actually viewed or, preferably, a larger known to the subject. The stimulus is scaled and
set of stimuli for more reliable estimation. This digitized (quantized) to 256 levels prior to pres-
Monte Carlo simulation of the performance entation, contributing an additional source of
of the ideal discriminator is a tractable corn- noise qk (X, y), called digitization noise. Finally,
putation that yields an estimate of expected a d.c. component (dc) is added to U~b to bring
performance. the mean luminance level to 128. These steps are

Derivation. Stimulus construction is dia- diagrammed in Fig. 6 which shows both the
grammed in Fig. 6 which shows the equivalent space-domain and the corresponding frequency-
operations in the space and the frequency do- domain operations. The space-domain compu-
mains. To derive an ideal discriminator, we need tation is encapsulated in equations (3):
to carefully review the processes of stimulus u4 (X y) - P4b.tlk(x, y) + n(X, y) (3a)
construction. We use uppercase letters to rep-
resent quantities in the frequency domain and U4b(X, y)A - P4[tb(xy) + nb(X, y)
lowercase letters to represent quantities in the + qb(xy)+ de. (3b)
space domain. A letter is defined by a 90 x 90
array that takes the value I at the letter The scaling constant PL,, limits the range of
locations and 0 at the background locations, real values for each pixel, prior to quantization,
When this array is spatially filtered in band b, it to [-0.5,255.5]. The degree of scaling is deter-
defines the letter template tfb(x, y), where I mined by the maximum and minimum values in
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the function t b + rb. Note that the extreme fore, it is expected to perform slightly worse
values in the image are determined by vN2 which than the ideal discriminator. The computational
is adjusted to yield the appropriate sin for each forms used to compute &. b and or I for the
condition; the values of ti.b are fixed prior to sub-ideal discriminator are presented in the
scaling. Specifically: Appendix, along with the derivation of the

256 likelihood estimator used by both discrimin-
Pb 256 . (4) ators. A complete discussion of these deri-

max(t, b + fb) - min(04 b + nb) vations and the problems associated with the
As a result of bandpass filtering, the formulation of an ideal discriminator for such

noise samples in adjacent pixels are strongly complex stimuli is presented in Chubb, Sperling
dependent on each other. Therefore, the dis- and Parish (1987).
criminator problem is best approached in the Performance of the bracketed discriminator.
Fourier domain, where the random variables The super- and sub-ideal discriminators were
{ Nb(wS, w•)) are jointly independent because tested in a Monte Carlo series of trials, in which
the filtering operations simply scale the differ- they each were confronted with 90 stimuli in
ent frequency components without intro- each of the frequency bands at each of seven s/n
ducing any correlations (van Tress, 1968). The values chosen to best estimate their 50% per-
task of the ideal discriminator is to pick the formance point. The s/n necessary for 50%
template t .b that maximizes the likelihood of u,., correct discriminations was estimated by an
with a priori knowledge of: (i) the fixed func- inverse interpolation of the best fitting logistic
tions ti.b, and their probabilities; and (ii) the function. The derived (s/n)5o% is the measure
densities of the jointly independent random of performance of a discriminator. The mean
variables {Nb(.o, c,)}. As is clear, Pu.b, 0'r, ratio, across frequency bands, of

{Q,6(w., co,)), and {Nb(coX, w,)} are all jointly
distributed random variables characterized by (s/n)50% sub-ideal/(s/n).w% super-ideal
some densityf To compute the likelihood of u,.b is about 2 (approx. 0.3 log,0 units). The
the ideal discriminator must integrate f over all bo 2 (o x 0.3 og units). Th
possible values that may be assumed by the ratio does not depend on the criterion of
set of jointly distributed random variables, performance.
whose values are constrained only in that they Efficiency of human discrimination
result in a possible stimulus Uh.b. Unfortunately,
no closed-form solution to this problem is avail- In all conditions, human subjects perform
able, forcing us to look for an alternative worse than the sub-ideal discriminator. Notably,
approach. with no added luminance noise, the subideal

Bracketing. To estimate the performance of (and, of course, the ideal) discriminator func-
the ideal discriminator, we look. for a tractable tion perfectly, even in b0 where subject perform-
super-ideal discriminator that is better than the ance is at chance, and in b, where subjects
ideal but which is solvable. Similarly, we look reached asymptote at about 50% correct.
for a tractable sub-ideal discriminator that is Data from the subjects are plotted with the
worse than the ideal. The ideal discriminator (s/n)50% sub-ideal and (s/n)_ super-ideal in
must lie between these two discriminators; that Fig. 5. For comparison, Fig. 5 also shows the
is, we bracket its performance between that of performance of a correlator discriminator which
a "super-ideal" and a "sub-ideal" discriminator, chooses the letter template that correlates most
The more similar the performance of the super- highly with the stimulus in the space domain. In
and sub-ideal discriminators, the more con- the coordinates of Fig. 5 og1os/n vs log10f
strained is the ideal performance which lies where f represents the mean 2D spatial fre-
between them. quency of the band), the vertical distance d from

Our super-ideal discriminator is told, a priori, the human data log(s/n)%, human down to the
the extact values for P4b and aI for each stimu- bracketed discriminator log(s/n)s0%, ideal rep-
lus presentation. Therefore, it is expected to resents the log,0 of the factor by which the
perform slightly better than the ideal discrimi- bracketed discriminator outperforms the human
nator which must estimate these values from observer at that value of f. For the purpose
the data. The sub-ideal discriminator estimates of specifying efficiency, we assume the ideal
these same parameters from the presented discriminator lies at the mid-point of the sub
stimulus in a simple but nonideal way. There- and super-ideal discriminators in Fig. 5. The
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are violated by our stimuli. However, when
0, -sufficient prior information is available to sub-

jects, they do appear to employ a cross-corre-
lation strategy (Burgess, 1985).

0. o It is interesting to note that the performance
of the spatial correlator discriminator over the

0., middle range of spatial frequencies is quite close
.Ito the performance of the sub-ideal discrimin-ooC to .1 10 31

2D Mean Spatial Frequency. Cycles/Object ator. At high spatial frequencies, correlator
Fig. 7. Discrimination efficiency as a function of the mean performance degenerates, due to its inability to
frequency of a 2-octave band (in cycles per letter height) focus spatially on those pixel locations that
indicated on a logarithmic scale. Data are shown for three contain the most information. A spatial corre-
observers: A = SAW, 0- = RS, 0 - DHP. The viewing lator that optimally weighted spatial locations,
distance is 2.21 m, which is representative of all viewing could overcome the spatial focusing problem at

distances tested. high frequencies. (Spatial focusing is treated in

the next section.)

efficiency eff of human discrimination relative At all frequencies, the spatial correlator is
to the bracketed discriminator is eff = 10-I, nonideal because noise at spatial adjacent pixels

where: • is not independent. At low spatial frequencies,
the nonindependence of adjacent locations be-

d = log(s/n)5o,/,.. - log(s/n)50 %* i.a. comes extreme and the correlator fails miser-
ably. This points out that, for our stimuli,

The values of eff in each object frequency correlation detection is better carried out in the
band are shown in Fig. 7. In band 0, eff is zero frequency domain because there the noise at
because human performance never reaches different frequencies is independent. The quali-
50%; indeed, it never rises significantly above tative similarity between the correlator dis-
4% (chance). In band 1, human performance criminator and the subjects' data suggests that
asymptotically climbs close to 50% as s/n ap- the subjects might be employing a spatial
proaches infinity; eff : 0. In band 2, eff reaches correlation strategy, augmented by location
its maximum of 35-47% (depending on the weighting at high frequencies.
subject), and it declines rapidly with increasing Lowest spatial frequencies sufficient for letter
frequency (b3-bs). discrimination. Band 2 corresponds to a 2-

The 42% average efficiency in band 2 is octave band with a peak frequency of 1.05
similar in magnitude to the highest efficiencies c/object (vertical height of letters) and a 2D
observed in comparable studies. For example, mean frequency of 1.49 c/object. At the four
efficiency has been determined for detecting viewing distances, 1.05 c/object corresponds to
various kinds of patterns in arrays of random retinal frequencies of 0.074, 0.234, 0.739 and
dots (Barlow, 1978, 1980; van Meeteren & 2.34 c/deg of visual angle. We observe perfect
Barlow, 1981), tasks which, like ours, may scale invariance: all of these retinal frequencies,
require significantly cognitive processing. In a and hence the visual channels that process this
wide range of conditions, the highest efficiencies information, are equally effective in achieving
observed were about 50%, and frequently the high efficiency of discrimination.
lower. Van Meeteren and Barlow (1981) also The finding that b2 with a center frequency of
found that efficiency was perfectly correlated 1.05 c/object and a I amplitude cutoff at 2.1
with object spatial frequency and was indepen- c/object is critical for letter discrimination is in
dent of retinal spatial frequency. good agreement with previous findings of both

Spatial correlator discriminator. A correlator Ginsburg (1978) for letter recognition and
discriminator cross-correlates the presented Legge et al. (1985) for reading rate. Legge et al.
stimulus with its memory templates and chooses used low-pass filtered stimuli, which included
the template with the highest correlation. Corre- not only spatial frequencies within an octave of
lation can be carried out in the space or in the I c/object (b2) but also included all lower fre-
frequency domain. Correlation is an efficient quencies. From the present study, we expect
strategy when noise in adjacent pixels is inde- human performance tith low-pass and with
pendent and when members of the set of signals band-pass spatial filtering to be quite similar up
have the same energy; both of these conditions to I c/object because the lowest frequency

vS 31-7.*_9



1412 DAVID H. pAJJsH and Gwaoa Snm awo

bands, when presented in isolation, are percep- Increasing spatial localization with increasing
tually useless (at least when presented alone), frequency band. From the human observer's

It is an important fact that our subjects point of view, the letter information in low-pass
actually performed better, in the sense of achiev- filtered images is spread out over a large portion
ing criterion performance at a lower s/n ratio, at of the total image array. In high spatial-fre-
higher frequency bands than b2. This is ex- quency images, the letter information is concen-
plained by the increase in stimulus information trated in a small proportion of the total number
in higher frequency stimuli. Increased infor- of pixels. In high spatial-frequency images, a
mation more than compensates for the subjects' human observer who knows which pixels to
loss in efficiency as spatial frequency increases, attend will experience an effective s/n that is

higher than an observer who attends equally to
Components of discrimination performance all pixels. In this respect, humans differ from an

Though the performance of the bracketed ideal discriminator. The ideal discriminator has
ideal discriminator is useful in quantifying the unlimited memory and processing resources,
informational utility of the various bands, it is does not explicitly incorporate any selective
instructive to consider the changing physical mechanism into its decision, and uses the same
structure of the stimuli as well. What com- algorithm in all frequency bands. Information
ponents of the stimuli actually lead to a gain in from irrelevant pixels is enmeshed in the
information with increasing frequency? Accord- computation but cancels out perfectly in the
ing to Shannon's theorem (Shannon & Weaver, letter-decision process. To understand human
1949), an absolutely bandlimited I -D signal can performance, however, it is useful to examine
be represented by a number of samples m that how, with our size-scaled spatial filters, letter
is proportional to its bandwidth. When the information comes to be occupy a smaller and
signal-to-noise ratio in each sample s,/n, is the smaller fraction of the image array as spatial
same, the overall signal-to-noise ratio s/n grows frequency increases.
as /m. In the space domain, our filters were Here we consider three formulations of the
constructed (approximately) to differ only in change in the internal structure of the images
scale but not in the shape of their impulse with increasing spatial frequency: (I) spatial
responses. Therefore, when the mean frequency localization; (2) correlation between signals; and
of a filter band increased by a factor of 2, the (3) nearest neighbor analysis. We have already
bandwidth also increased by 2. Since the stimuli noted that, in our images, the information-rich
are 2D, the effective number of samples in- pixels become a smaller fraction of the total
creases with the square of frequency, and the pixels as frequency band increases. Indeed, this
increase in effective s/n ratio is proportional to reduction can be estimated by computing the
m. This expected improvement with frequency, information transmitted at any particular pixel
based simply on the increase in effective number location or, more appropriately for estimating
of samples, is indicated by the oblique parallel noise resistance, by computing the variance of
lines of Fig. 5 with slope of - i. The expected intensity (at that pixel location) over the set of
improvement in threshold s/n due simply to the 26 alternative signals.
linearly increasing bandwidth of the bands does To demonstrate the degree of increasing
a reasonable job of accounting for the improve- localization with increasing frequency, the vari-
ment in performance for both human and ance (over the set of 26 letter templates) was
bracketed discriminators between b2 and bs. computed at each pixel location (x, y). Total

Performance of all discriminators improves power, the total variance, is obtained by sum-
faster with frequency between 0.39 and 1.5 rming over pixel locations. The number of pixel
c/object and between 5.8 and 22 c/object than is locations needed to achieve a specific fraction of
predicted from the bandwidths of the images. A the total power is given in Fig. 8, with frequency
slope steeper than - I means that there is more band as a parameter. These curves describe the
information for discriminating letters in higher spatial distribution of information in the latter
frequency bands even when the number of templates. If all pixels were equally informative,
independent samples is kept the same in each exactly half of the total number of pixels would
band. Once sampling density is controlled, just be needed to account for 50% of the total
how much information letters happen to con- power. The solid curves in Fig. 8 show that the
tain in each frequency band is an ecological number of pixels needed to convey any percent-
property of upper-case letters. age of total signal power, decreases as the
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.0- 5 4 3 2 Table 3. Average puirwise correlatio•s and
- - -- nearest neighbors (Euclidean distance x 10-')

s oBand Correlations Nearest neighbor

0.-0 0.94 0.01
- 1 0.91 0.30

"0.4 2 0.58 1.2
3 0.38 2.3
4 0.33 3.1
5 0.31 4.1

0L | I I I I
0 1000 2000 3000 40O 5000

Number of l&*ts possible positions of t, are described by a cloud
Fig. 8. Fraction of total power contained in the n most whose dimensions are determined by the s/n
extreme.valued pixels as a function of n (out of 8100). Solid ratio. A neighboring letter k may be confused
fines indicate the power fractions for signals; the curve with letter i when the cloud around t, envelopes
parameter indicates the filter band. Dashed lines indicate tt. The closer the neighbor, the greater the
power fractions for filtered noise fields. Although power
fractions from successive bands of noise are too close to opportunity for error. Table 3 gives the average
label, they generally fall in the same left-right 5-0 order as normalized distance to the nearest neighbor in

those for signal bands. each of the bands. The increase in distance to
the nearest neighbor reflects the improvement in

frequency band increases. These information the representation of signals as spatial frequency
distribution curves are an ecological property of increases.
our set of letter stimuli; different curves would We consider possible causes of lower
be needed describe other stimulus. sets. efficiency of discrimination in bands below b2 .

The dashed curves in Fig. 8 were derived from The letters in these bands have high pair-wise
random noise filtered in each of the six fre- correlations and the mean band frequency is
quency bands (b0-bs). The distribution of noise less than the object frequency. This means
power is very similar between the various bands, that letters differ only in subtle differences of
enormously more so than the distribution of shading, a feature that we usually do not think
signal power. For our letter stimuli, stimulus of as shape. Observers would need to be able to
information coalesces to a smaller number of utilize small intensity differences to distinguish
spatial locations as spatial frequency increases, between letters. To eliminate an alternative ex-

Correlation between signals. A more abstract planation (the smaller number of frequency
way of describing the change of information components in the low-frequency bands), we
with bandwidth is to note that letters become conducted an informal experiment with a lower
less confusible with each other in the higher fundamental frequency. The fundamental fre-
frequency bands. A good measure of confusibil- quency, which is outside the band, nevertheless
ity is the average pairwise correlation between determines the spacing of frequency coin-
the 26 letter templates in each frequency band ponents within the band. Reducing the funda-
(Table 3). The average correlation between mental frequency of the letter by one-half
letter templates diminishes from 0.94 in band 0 increases the number of frequency components
to 0.31 in band 5. In a band in which templates in the band by a factor of 4. (A 256 x 256
have a pairwise correlation over 0.9, the over- sampling grid was used rather than 128 x 128.)
whelming amount of intensity variation ("infor- These 4 x more highly sampled stimuli were not
mation") is useless for discrimination. Small more discriminable than the original stimuli.
wonder that subjects fail completely in this This suggests that the internal letter represen-
band. Overall, performance of the ideal dis- tation (template) that subjects bring with them
criminator and of observers improves as the to the experiment cannot utilize low-frequency
correlation decreases, but there is no obvious information, even when it is abundantly avail-
way to use the pairwise correlation between able. Whether, with sufficient training, subjects
templates to predict performance. could learn to use low spatial frequencies to

Nearest neighbors. The analysis of nearest make letter discriminations is an open question.
neighbors is a useful technique for predicting
accuracy by the analysis of the possible causes SUMMARY AND CONCLUSIONS
of errors. We can regard a filtered image t, of
letter i as a vector in a space of dimensionality 1. Visual discrimination of letters in noise,
8100 (90 x 90 pixels). When noise is added, the spatially filtered in 2-octave wide bands, is
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independent of viewing distance (retinal fre- Burgess, A. (1985). Visual signal detection-Ill. On
quency) but improves as spatial frequency Bayesian use of prior knowledge and cros correlation.
iuncy)a . Journal of the Optical Society of America A. 2(9).

increases. 1498-1 507.

2. The improvement in performance with Burges, A. (1986). Induced internal noise in visual decision

increasing spatial frequency results mainly from tasks. Journal of the Optical Society of Anserica A. A1 93.

an increase in the objective amount of infor- Burt, P. J. & Adelson, E. H. (1983). The Laplacian pyramid

mation transmitted by the filters with increasing as a compact image code. IEEE Transactions on Com-
municatioesi Com-34(4), 532-540.

frequency (because filter' bandwidth was pro. Campbell, F. W. & Robson, J. G. (1968). Application of
portional to center frequency) which is mani- Fourier analysis to the visibility of gratings. Journal of

fested as objectively less confusible stimuli in the Physiology, London 197, 551-566.
higher bands. Carlson, C. R., Moeller, J. R. & Anderson, C. H. (1984).

3. The comparison of human performance Visual illusions without low spatial frequencies. Vision
with that of an estimated ideal discriminator Research, 24, 1407-1413.

Chubb, C., Sperling. G. & Parish. D. H. (1987). Designing
demonstrates that humans achieve optinal psychophysical discrimination tasks for which ideal per-

discrimination (a remarkable 42% efficiency) formance is computationally tractable. Unpublished
when letters are defined by a 2-octave band of manuscript, New York University, Human Information
spatial frequencies centered at I cycle per letter Processing Laboratory.

Davidson, M. L. (1968). Perturbation approach to spatial
height (mean frequency 1.5 c/letter), s high brightness interaction in human vision. Journal of the

efficiency of discrimination is maintained over a Optical Society of America A, 58, 1300-1309.
32:1 range of viewing distances. Fiorentini, A., Maffei, L. & Sandini, G. (1983). The role of

4. Detection efficiency was invariant over a high spatial frequencies in face perception. Perception, 12,
range of retinal spatial frequencies in which the 195-201.

Geisler, W. S. (1984). Physical limits of acuity and hyper-
contrast threshold for detection of sine gratings acuity. Journal of the Optical Society of America A, 1,
(the modulation transfer function, MTF) varies 775-782.
enormously. The independence of detection per- Geisler, W. S. (1989). Sequential ideal-observer analysis of

formance and retinal size held for all frequency visual discriminations. Psychological Review, 21,267-314.
bands. Ginsburg, A. P. (1971). Psychological correlates ofa model

of the human visual system. In Proceedings of the
5. A part of the loss of human efficiency in National Aerospace Electronics Conference (NAECON)

discrimination as spatial frequency exceeded 1 (pp. 283-290). Ohio: IEEE Trans. Aerospace Electronic

c/object height may have been due to the sub- Systems.
jects' inability to identify, to selectively attend, Ginsburg, A. P. (1978). Visual information processing based

and to utilize the smaller fraction of information- on spatial filters constrained by biological data. Aero-
space Medical Research Laboratory, 1(2), Dayton, Ohio.

rich pixels in the higher frequency images. Ginsburg, A. P. (1980). Specifying relevant spatial infor-

6. Finally, it is important to note that mation for image evaluation and display designs: An
without the comparison to the ideal observer, explanation of how we see certain objects. Proceedings of
we would not have been able to understand the SID, 21, 219-227.
components of human performance in the Ginsberg, A. P. & Evans, P. W. (1979). Predicting visual

illusions from filtered imaged based on biological data.different frequency bands. Journal of the Optical Society of America A, 69, 1443.
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Norman, J. & Ehrlich, S. (1987). Spatial frequency filtering To compute the likelihood estimates for each template t,,.
and target identification. Vison Research. 27(l). 97-96. we must be able to reverse the effect of P0,. Thus we define

Parish, D. H. & Sperling, G. (1987a). Object spatial frequen- a,,, - 1/Pa, and choose a,., so as to minimize the expression:
oin, retinal spatial frequencies, and the efficiency of letter •[eu(x)] = E.[,I.,lb(X)]. (A3)
discrimination. Mathematical Studies in Perception and (A 3

Cognition, 87-4. New York University, Department of Solving for eit, gives us:
Psychology.

Parish, D. H. & Sperling, G. (1987b). Object spatial fre-r
quency, not retinal spatial frequency, determines identi- it[ .(X)J2 s

fication efficiency. Imes•iatwe Ophthalmology and Visual do, - ps., . (A4)

Science (ARVO Suppl.). 28(3). 359. E
Pavel, M., Sperling, G., RiedI, T. & Vanderbeek, A. (1987).

The limits of visual communication: The effect of sinal-to- Finally we set:

noise ratio on the intelligibility of American sign language. 1 '
Journal of the Optical Society of America A, 4,2355-2365. 2 (AS)

Pelli, D. G. (1981). Effects of visual noise. Ph.D. disser- v X " - tI.(x)(

tation. University of Cambridge, England. where X - 8100, the number of pixels in the image.
Shannon, C. E. & Weaver, W. (1949). The mathematical

theory of communication. Urbana: University of llbnois Likelihood Estimation
Press. With estimates of v2, and a,, for the sub-ideal dis-

Sperling, G. (1989). Three stages and two systems of visual criminator, and the a priori values for the super-ideal
processing. Spatial Vision, 4 (Prazdny Memorial Issue), discriminator, we can formulate a maximum likelihood
183-207. 1 estimator. By rearranging terms of equation (Al) and

Sperling, G. & Parish, D. H. (1985). Forest-in-the-Trees dividing both sides by P yields:
illusions. Investigative Ophthalmology and Vbual Science
(ARVO Suppl.), 26, 285. u ti.(x) q M(x) (A6)

Tanner, W. P. & Birdsall, T. G. (1958). Definitions ofd' and P-t,(x)=na(x)+
n as psychophysical measures. Journal of the Acoustical Substituting a~b for I/#, and by transposing into the fre-
Society of America, 30, 922-928. quency domain, denoted by upper-case letters and indexed

van Tress, H. L. (1968). Detection, estimation and modu- by ai, we have:
lotion theory. New York: Wiley.

Winer, B. J. (1971). Statistical principles in experimental ;t E4.b(ai)--7~(o)-N 4(w)+a~jQ•(w). (A7)
psychology. New York: McGraw-Hill. Note that the left side of equation (A7) is simply a

difference image between the stimulus UVb(aI) and the

APPENDIX template T, (&). This difference is exactly equal to the sum
of the luminance and quantization noise only when the

Both sub-ideal and super-ideal discriminators must compute correct template is chosen (i - k). When the incorrect
estimates of the likelihood that the stimulus u., was pro- template is chosen (i # k) the right hand side of equation
duced with template t,, and noise n4 , where k is the letter (A7) is equal to the sum of the noise sources plus some
used to generate the stimulus, i is an arbitrary letter, and b residue that is equal to T,.h(w) - Tb(w). Under the
indexes spatial frequency band. Let x be an index on the assumption that quantization noise can be modeled as
pixels of the image: I4 x • 8100. for the 90 x 90 images of independent additive noise in the frequency domain, the
the experiments. density A of the joint realization of the right-hand side of

For the Monte Carlo simulations of the super-ideal equation (A7) is given by:
discriminator, the unknown stimulus parameters, ab and a I
are computed during stimulus construction, and their exact A -fl
values are supplied to the discriminator a priori. The-F
sub-ideal discriminator, however, must estimate these par- -x Ia..Ukt(n)- TLS(o)I (S
ameters from the data as follows. expE L 21 (A

Sub-Ideal Parameter Estimation where F&(W) is simply the kernel of filter b, in the frequency
Recall that stimulus contrast is modulated for any pixel domain. Dropping the multiplicative term in equation (AS),

x in the image: which does not depend on the template T, and taking logs,

uh.htx] = $,.~tt(x) + nh(x)J]+ q,(x). (Al) the ideal discriminator chooses the template that minimizes:

The scaling constant P,. limits range of real values for each XIaoeuI./A,() -
7To(W)I (A9)

pixel, prior to quantization, to the open interval (-0.5, E 2 a4 huQ+uII~h~WJ

255.5); the addition of qb[xb, called quantization noise, Finally, it is more convenient to compute the power of
rounds off pixel values to integers, the quantization noise in the space domain (uo) than in the

For each bandpass filtered template tb, we first compute frequency domain (al); a -= a. Spatial quantization noise,
the correlation ph., of the template to the stimulus u,.,: q,,(x), is uniformly distributed on the interval (-0.5, 0.5),

Y .,(x)t.h(x) so that a, is computed as

Pk" (A2) F x2 dx (AIO)

{Z~uh~x} {(t,&~)rV} and is equal to 1/12.
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Ahstract-We use a difficult shape identification task to analyze how humans extract 3D surface structure
fram dynamic 2D stimuli--the kinetic depth effect (KDE). Stimuli composed of luminous tokens moving
on a Less luminous background yield accurate 3D shape identification repardless; orf th particular token
used (either dots. lines, or disks). These displays stimulate both the Ist-order (Fourier-energy) motion
detectors and 2nd-order (nonFourier) motion detectors. To determine which system supports KDE. we
employ stimulus manipulations that weaken or distort lot-order motion energy (e.&. frame-to-frame
alternation of the contrast polarity of tokens) aril manipulation that crer- usierobulaned stimuli which
have no useful Ist-order motion energy. All manipulations that in,, 4.xr st-order motion energy
correspondingly impair 3D shape ideotilcatiots. In certain cases 2nd-ordes motion could support limited
KDE. but it was not robust and was of low sptial resolution. We conclude that 1st-order motion detectors
are the primary input to the kinetic depth system. To determine minimal conditions foir KDE. we use a
two frame display. Under optimal conditions. KDE supports shape identification performance at 63-9%%
of full-rotation displays (where baseline is 3%). Increasing the amount of 3D) rotation portrayed or
introducing a blank inter-stimulus interval impairs performance. Tooether. our results confirm that the
human KDE computation of surface shape uses a global optic flow computed primarily by lUt-order
motion detectors with minor 2nd-order inputs. Accurate 3D shape identification requires only two views
and therefore does not require knowledge of acceleration.-

KDE Kinetic depth effect Structure frornt motion Shape Optic flow~

IN-rRODLICTION surface portrayed using random dot displays. In
each trial of a new shape identification task we

When a collection of randomly positioned dots devised. subjects view a random dot represen-
moves on a CRT screen with motion paths thmt tation of one of a set of 53 3D shapes and
are projections of rigid 3D motion, a humzn identify the shape and rotation direction Shape
viewer perceives a striking impression of thrte- identity feedback optimizes the subject's ability
dimensionality and depth. This phenomenon to compute shape from each type of motion
of depth computed from relative motion ckxes stimulus. For accurate performance, the task
is known as the' kinetic depth effect (KDE; requires either a 3D percept or a subject strategy
Wallach & O'Connell, 1953). - that uses 2D velocity information in a manner

What are the important cues that lead to a 3D) that is computationally equivalent to that re-
percept from such adisplay'is it motion.or am quired to solve for 3D shape (Sperling et al..
there other important cues? If it is motion, then 1989, 1990. see the discussion of cxpit 2. 'dow).
what kind of motion detection system(s). are We have show that the only cue wa-- -I-"'I
used to support the structure-from-motion com- perceptibn of three-dimcnsionality in tivije ,*s-
putation? Is a computation of velocity Sufficient, plays is motion (Sperling el IL, 1999. 190O).
or are more elaborate measurements necessary, Further experiments determ -'-ed that global
such as of acceleration? These are the questions optic flow is used rather th1xi *,he position
that we address in this paper. information for individual do"s irincc rx'racy

In a serits of recent papers (Dosher, Land'. A remains high whe dot lietmsaerdcd to
Sperling, 1989a, b; Sperling, Landy, Dosher A as little as two frmes% (Dosher et al., 1989b). In
Perkins, 1989; Sperling, Dosher & Lazidy, 199 4) that paper, we concluded that the input 0o the
we examined the cues necessary for subjects to K.DE computatiop is an optic flow generated by
perceive an accurate representation of a -',D a 1st-order motion detection mechanismn, such

s59
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as th-. Reichardt detector (Reichardt, 1957). nimng outputs of many detectors to enable
Two manipulations that perturb 1st-order predictions of psychophysical experiments, re-
motion energy mechanisms-flicker and po- suiting in their Elaborated Reichardt Detector
larnty alternation-also interfered with KDE (ERD).
(Dosher et al., 1989b). In polarity alternation, An alternative way of characterizing motion
dots change over time from black to white to detection is in the frequency domain. A motion
black on a gray background. When compared to detector can be built of several linear spatio-
dots that remain white, polarity alternation was temporal filters. Each filter is sensitive only to
equally or slightly more detectable in a detection energy in two of the four quadrants in spatio-
task, was poorer but still well above chance in temporal Fourier space ((,, a,). In other
a discrimination of direction of motion task words, the filters are not separable. Their recep-
(computed, presumably, using tracking of the tive fields are oriented in space-time, and thus
dots or using more elaborate, 2nd-order motion they are sensitive to motion in a particular
detection mechanisms) but was useless for tasks direction and at a particular scale (Adelson &
requiring KDE or motion segregation. These Bergen, 1985; Burr, Ross & Morrone. i986;
latter two tasks require the evaluation of vel- Watson & Ahumada. 1985). The Fourier
ocity in a number of locations simultaneously "'energy" (the squared output of a quadrature

(Sperling et al., 1989). Shape identification per- pair of filters) in each of two opposing motion

formance in a range of conditions was shown to directions is computed, and put in opponency.

be monotonic with a computed index of lst- This "motion energy detector", proposed by

order net directional power in the stimuli Adelson and Bergen (1985), and the ERD difler

(Dosher et al.. 1989b). Hence, for sparse in their construction and in the signals available

dot stimuli, KDE depends upon a simple at the subunit level, but are indistinguishable at

spatio-temporal (Ist-order) Fourier analysis of their outputs (Adelson & Bergen, 1985; van

multiple local areas of the stimulus. Santen & Sperling. 1985).
In this paper. we further examine and gener- The structure-from-motion computation re-

alize the contributions of several types of lies upon the measurement of image velocities

motion detectors to the optic flow computations at several image locations. The KDE shape

used by the structure-from-motion mechanism. identification task that we use here can be solved
by categorizing velocity at six spatial locations

MOTION ANALYSIS MODELS AND THE KDE into three categories: leftward, approximately
zero. and rightward (Sperling et al.. 1989). Thus.

Ist-order molion analysis in order to discriminate the 53 test shapes

To motivate the stimulus conditions studied by KDE, motion detection must be followed

here, we begin by summarizing models of early by at least some rudimentary local velocity

motion detection and analysis. Several recent calculation.
motion detection models (van Santen & Sper- In order to signal velocity, the outputs of

ling, 1984, 1985; Adelson & Bergen. 1985; Wat- more than one such 1st-order motion detector

son & Ahumada, 1985) share as a common must be pooled. Speed may be computed by

antecedent the mode! proposed by Reichardt pooling only two detectors (a motion and a

(1957). We refer to this class of models as "static" detector, Adelson & Bergen, 1985). To

Ist-order motion detectors. Below, 2nd-order signal motion direction, signals must be pooled

mechanisms involving additional processing across a variety of orientations (Watson &

stages will be discussed. In the Reichardt detec- Ahumada, 1985. Finally. in order to solve the

tor, luminance is measured at two spatial lo- "aperture plroblem" for more complex stimuli

cations A and B. The measurement at position (Burt & Sperling, 1981; Mart & Ullman, 1981),

A is delayed in time, and then cross-correlated signals may be pooled over a variety of

over time with the measurement at position B, directions and perhaps scales (Heeger, 1987).

resulting in a "'half-detector" sensitive to In the previous paper (Dosher et al., 1989b),

motion from position A to B. A second such shape identification performance was shown to

"half-detector" sensitive to motion from B to A relate directly to the quality of the signal avail.

is set in opponency with the first, resulting in the able from Ist-order motion detection mechan-

full motion detector. van Santen and Sperling isms. Each stimulus consisted of a large number

(1984, 1985) have investigated this model along of dots on a graylbackground representing a 2D

with extensions involving voting rules for com- projection of dots on the surface of a smqoth 3D
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shape under rotary oscillation. In one condition the contribution of both to the perception of
(contrast polarity alternation), the dots were planar motion (Anstis & Rogers, 1975; Chubb
first brighter than the background ("white-on- & Sperling, 1988b, 1989a, b; Lelkens &
gray"), then darker than the background Koenderink, 1984; Ramachandran, Rao &
("black-on-gray"), then bright again, in succes- Vidyasagar, 1973; Sperling, 1976).
sive frames. For a dense random dot field (50% Can both Ist- and 2nd-order motion mechan-
black/50% white) under simple planar motion, isms be used by the KDE system? The polarity-
polarity alternation causes a percept of motion alternating dots did not yield an effective KDE
opposite to the true direction of motion (the percept of our 3D shapes. If one accepts the
"reverse-phi phenomenon", Anstis & Rogers, existence of both Ist- and 2nd-order motion
1975); reverse-phi is thought to reflect a spatio- mechanisms, why didn't the 2nd-order system
temporal Fourier analysis of the stimulus, since support KDE? The KDE stimuli were relatively
contrast reversal reverses the direction of small (3.7 x 4.2 deg) and viewed foveally (eye
motion of the lowest-frequency Fourier com- movements were permitted throughout the 2 sec
ponents (van Santen & Sperling, 1984). With stimulus duration). Evidence from studies of
contrast reversal, the outputs of Ist-order planar motion suggests that both systems were
motion detection mechanisms no longer simply available under these conditions (Chubb &
signal the intended direction and velocity of Sperling, 1988b). For polarity alternation
motion. Contrast reversal stimuli do not yield stimuli, the most salient low frequency com-
a depth-from-motion percept (Dosher et al., ponents from the Ist-order system were in
1989b). We take this as evidence that the the wrong direction. We assume that the 2nd-
KDE relies upon input from a Ist-order motion order system yields a correct (if attenuated)
analysis. analysis. Bad shape identification performance

may have resulted either from the perturbed
2nd-order motion analysis 1st-order analysis or because of competition

For the sparse random dot stimuli (Dosher et between the 1st- and 2nd-order systems (which
al., 1989b), contrast polarity alternation elimi- signaled opposite directions of motion in
nated the perception of structure from motion. some frequency bands). Our evidence (Dosher
Nonetheless, subjects could judge the direction et al., 1989b) demonstrated that Ist-order
of patches of contrast polarity alternating dots system input is the predominant input to
undergoing simple translation. What kind of a KDE, but it did not exclude the possibility of
motion detector might be used to correctly input from 2nd-order motion detection mech-
judge the motion of a translating, polarity- anisms. To approach that question, we con-
alternating dot? One simple possibility would be sider a KDE stimulus that produces a simple
to first apply a luminance nonlinearity to the 2nd-order motion analysis, but to which
input stimulus. For example, if the input stimu- the 1st-order motion system is, statistically,
lus were full-wave rectified about the mean blind.
luminance, the polarity-alternating stimulus
would be converted to the equivalent of rigid Microbalanced motion stimuli
motion of a white dot on a gray background.' Chubb and Sperling (1988b) defined a class of
Thus, a full-wave rectifier of contrast followed stimuli, called microbalanced, among which are
by a 1st-order analyzer (such as those discussed stimuli with the properties that we desire. In
above) would be capable of analyzing such a 'expt I we concentrate on two examples of
motion stimulus correctly (Chubb & Sperling, microbalanced motion stimuli. These stimuli are
1988b, 1989a, b). random in the sense that any given stimulus is

A motion detection system consisting of a a realization 6f a random process. As proven by
contrast nonlinearity followed by a 1st-order Chubb and Sperling (1988b), if a stimulus is
detector is one example of a wide class of microbalanced then the expected output of
"2nd-order detection mechanisms", each of every 1st-order detector (ERD or motion
which consists of a linear filtering of the input energy detector) will be zero. Thus, Chubb and
(spatial and/or temporal), followed by a con- Sperling defined a class of stimuli for which a
trast nonlinearity, followed by a standard 1st- consistent motion signal requires a 2nd-order
order motion detection mechanism. A number motion analysis, and showed that the 2nd-
of results demonstrate the existence of both 1st- order analysis predicted observers' percepts for
and 2nd-order motion mechanisms and show several examples £f the class.
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The polarity alternation stimulus is not alternation resulted from the low contrast
tilcrobalanced; any given frequency band does energy in the stimulus. Two forms of micro-

show consistent motion, with the lowest spatial balanced stimuli are used, allowing us to test
frequencies signalling motion in the wrong di- KDE shape identification performance with
rection. This stimulus can be transformed into stimuli to which 1st-order motion detectors are
a microbalanced one as follows: for each dot, blind. Finally, we examine stimuli in which
choose the contrast polarity randomly and inde- moving textured tokens are camouflaged by a
pendently for every frame. Any given Ist-order similarly textured background.
detector will be just as likely to signal rightward
motion as it is to signal leftward motion since it Method
will either see the same contrast polarity across Subjects. There were three subjects in this
any successive pair of frames or it will see experiment. One was an author, and the other
contrast polarity alternate, with equal prob- two were graduate students naive to the pur-
ability. One question we examine in this paper poses of thi experiment. All had normal or
is whether the motion signal available from corrected-to-normal vision. There were slight
2nd-order mechanisms can be used to compute differences in the conditions for each of the
3D structure. three subjects. These will be pointed out below.

We p.esent two experiments. In the first, we White-on-gray dot stimuli. First, we briefly
examine performance on a shapeidentification describe the stimuli that consist of bright dots
task for a variety of KDE stimuli. Several type-s moving on a gray background representing a
of stimuli provide good Ist-order motion. variety of 3D shapes. This description will be
Others are microbalanced and hence can only be somewhat abbreviated, since the same stimuli
analyzed by 2nd-order mechanisms. Still others have been used in previous studies and more
offer good Ist-order motion, but involve complete descriptions are available (Sperling et
camouflage similar to that available in some of al., 1989). The other stimuli used in the present
the microbalanced conditions. We find that study result from simple image processing trans-
1st-order motion is used, and that input from formations applied to the white-on-gray dot
2nd-order mechanisms may also be used but is stimuli.
not as robust. In a second experiment, we Stimuli were based upon a fixed vocabulary of
examine the residual shape percept from two- simple shapes consisting of bumps and concav-
frame KDE stimuli in order to determine ities on a flat ground. The 3D shapes varied in
whether a single velocity field is a sufficient cue the number, position, and 2D extent of these
for shape identification or whether acceleration bumps and concavities. The process of generat-
also is needed. ing the stimuli is illustrated in Fig. 1.

The first step in creating a stimulus involves
the specification of a 3D surface. For a squareEXPERIMENTr I. POLARITY ALTERNATION.

MICROBALANCE, AND CAMOUFLAGE area with sides of length s, a circle with diameter
0.9 s is centered, and three fixed points, labeled

In the first experiment, a shape discrimination 1, 2 and 3. are specified. For a given shape, one
task is used with a variety of displays. First, in of two such sets of points is used (the upward-
order to sensibly compare results to our pre- pointing triangle or the downward-pointing tri-
vious work (Sperling et al., 1989; Dosher et al., angle, labeled u and d, respectively). The shape
1989b), there are control conditions that are is specified as having a depth of zero outside of
identical to those of our previous experiments the circle. For each of the three identified points,
(the "Motion without density cue, standard the depth mty be either +0.5 s. 0.0. or --0.5 s.
speed, standard intensity" and "Motion with which are labeled as +, 0, and -, respectively.
polarity alternation, standard speed, standard The depth values for the rest of the figure were
intensity" conditions of the preceding paper). "n interpolated by using a standard cubic spline to
addition, to dots, randomly positioned disks and connect the three interior points with the zero
lines are also used here in order to examine t•-e depth surround. Thus, there are 54 ways to
effects of the foreground token used to carry .Ile designate a shape- u vs d, and for each of three
motion. The disk and line tokens are larger thin interior points, + vs 0 vs -. We designate a
the single pixel dots, and hence have mcg:e shape by denotinp the triangle used, followed by
contrast energy. They enable us t&-iest whether the depth designations of the three points in the
our previous failure to find KDE with polarity order shown in Fig. IA. For example, u - +0
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Top, side/00 uO

UOOO /dOOO U #00 W +-O dO..

(C)

Fig. 1. Stimulus shapes. rotations, and their designations. (A) Shapes were constructed by choosing one
of the two equilateral triangles represented here. Each point in the triangles was Sivn a positive de*
(i.e. toward the observe). zero depth, or negative depth. reprsted as -, 0 &no - . respectively. A
smooth shape splined these three points to 2ero depth values outside of the -- A shape is designated
by the choice of triangle (a or followed by the depth de ations of the three points the order given
in the figure. (B) Some repesenta shapes aenerted by this praedume AD shapes consisted of a bump.
concavity, or both. with a variation in positio and extent of these areas. (C) Shapes we represented
by a set of dots randomly paintedon the srface of the shape. and wiggled about a vertical axis through
the center of the display. The motion was a sintsoidal rotation that moved the object so as to face off
to the observer's right. then his or her leWt then back to face-forward (denoted a), or the reverse

(denoted P).

is a shape with a bump in the upper-middle of surround is continued outside the square). This
the display, and a concavity in the lower-left collection of dots is rotated about a vertical axis
(Fig. IB). There are 53 distinct shapes, because that is at zero depth and cenWcred in the display.
uOOO and dOOO both denote a flat square. The rotation angle 0(k) is a sinusoidal "wiggle":

Displays were generated by sprinkling dots O(k) = ±25 sin(2xk/30) deg. where k is the
rar.'omly on the 3D surface generated by the frame number within the 30 frame display.
spline, rotating that surface, and projecting the Thus, the display either rotated 25 deg to the
resulting dot positions onto the image-plane right, then reversed its direction until it faced
using parallel perspective. A large number of 25 deg to the left, then reversed its direction
dots are chosen uniformly over a 2D area until it was again facing forward (labeled 1), or
somewhat larger than the s by s square, and rotated in the opposite manner (labeled P, see
each dot's depth is determined by the cubic FiZ. IC). The displays presented these 3D
spline interpolant (where the zero depth of the collections of dots in parallel perspective
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huý,witous dots (single pixels) on a daikeir o±ults in a sinai amount of dot scinti!lation
A_.•kg•ound. that neither lowers performance substantially
:\ stimulus name consists of the name ot the nor appears to be useful as an artifactual cue

.!tepe followed by the type of rotation (e.g. (Sperling et al., 1989, 1990).
-01), resulting in 108 possible names. Using Other tokens. The 54 stimuli described so far

parallel perspective, there is a fundamental consisted of luminous dots moving to and fro on
artibiguity with the KDE: reversing the depth a less luminous background. All other stimuli
values and rotation directioh of a particular were based upon these displays. First, three
sbape and rotation produces exactly the same conditions involved changes of the token dilat

display. In other words, a convexity rotating to carried the motion. The moving dots were rt-
die right produces exactly the same set of 2D placed with disks, patterned disks, or wires. We
dot motions as a concavity rotating to the teft. refer to the dot, wire, and disk conditions as
Thus, u + -01 an 4 u - +Or describe precisely white-on-gray stimuli, and the patterned disks
the same display type. There is also no differ- as pattern-on-gray.
ence in display type amorig uOOO1, uOOOr, dO0O1 To create a disk stimulus, a dot stimulus is
and dOOOr. This results in a total of 53 distinct modified in the following way. Each luminous
display types. dot in the stimulus is replaced with a 6 x 6 pixel

These experiments used 54 white-on-gray dot luminous diamond centered on the dot
displays. including two instantiations of the flat (Fig. 2b), which appears disk-like from the
stimulus uOOO (with different dot placements) viewing distance used in the experiment. A
and one instantiation of each other display type. sample image of white-on-gray disks is depicted
Each set of dots was windowed to a display area in Fig. 2c, and is based on the white-on-gray dot

of 182 x 182 pixels (corresponding to the s, x s stimulus frame shown in Fig. 2a.
square), with dots presented as single lumni>ous The pattern-on-gray disk stimuli are gener-

pixels. ated in a similar fashion. The 6 x 6 diamond
When the dots on the surface of a shape .nove consists of 24 pixels which are a mixture of

back and forth in the display, the local dot black and white (12 of each). T"h-.se are dis-
density changes as the steepness of the hills and played on an intermediate gray background.
valleys changes (with respect to the line of The diamond pattern and a sample stimulus
sight). In previous work (Sperling et al., 1989), frame are shown in Fig. 2d and e, respectively.
we showed that this density cue is neither Not' that the diamond pattern has an equal
necessary nor sufficient for the perception of number of black and white pixels in each row.
depth. However, it is a weak cue which or.e of Other stimuli were based on "wires". Each

three highly trained subjects was able to use for dot was connected by a straight line (subject to

modest above-chance performance when it was the pixel sampling density) to all neighbors that

presented in isolation. In other words, changing were at a 2D distance no greater than 15.5 pixels

dot density is an artifactual cue to the task. As (Fig. 2f). Note that a vector is drawn between
in previous experiments, we remove this cue by two points based on their distance in the image,
deleting or adding dots as needed throughout not on their simulated 3D distance. Since the
the display in order to keep lacal dot d-imsity lines were straight, when set in motion they
constant. As a result of this manipulation, all objectively define a thickened surface with lines
displays had approx. 300 dots visible in the cutting through the interior of each bump and
display window. The removal of the density cue concavity. This may have yielded a perceived

Fig. 2 (opposite). Stimulus display generaton tor expt 1. (a) A single frame of a white-on-gray dots

stimulus. All displays shown in this figure ai based on this stimulus frame. (b) The diamond shape used
to generate the disks from the dots. (c) A wite-on-gray disks stimulus frame. (d) The patterned diamond
for the pattern-on-gray condition. (e) A patttrn-on-pray frame. (f) A white-on-gray inres frame. All pairs

of dots in Fig. 2A were connected whose ihter-point distance was less than 15.5 pixels. (g) A frame of

dynamic-on-pray dots. In'this condition each, dot was painted black or white randomly and independently

with probability of 0.5 for each color. (h) A frame of dynamic-on-pray disks. The same procedure as in

(g) was applied to each pixel lying in each disk. (i) A frame of dynamuc-on-gray wires. (j) A frame of

dynamic-on-static disks. For both dynamic-on-static conditions (disks and wires), the tokens and the

background consisted of random dot noise, and so the tokens cannot be discerned from a single static

frame. (k) A frame of the pattern-on-static condition. This frame contains 300 copies of the pattern in

(d) on a static noise background. The camouflage is quite effective. (i) An enlargement of the central

portion of (k). with the patterned disks emphasized.
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(tesselated) surface having slightly less relative tbon. This stimulus manipulation was explored
depth than the base surface. The choice of 15.5 thoroughly for dot stimuli in the preceding
pixels as the criterion for drawing a line was a paper (Dosher et al., 1989b). In this condition,
compromise set in order to make sure that all the motion-carrying tokens alternate from white
stimulus dots became an endpoint to at least to black to white again on successive frames, all
one line, and that no line was so long as to against a background of intermediate gray.
excessively cut through the simulated surface. Constrast polarity alternation was used with

The white-on-gray disks and pattern-on-gray dots, disks, and wires, resulting in three polarity
disks were based on the dot stimuli. The same alternation conditions.
exact instantiations were used in all three con- Pattern-on-static. The final condition in-
ditions. The nth frame of a given shape and volves pattern camouflage. This condition is
rotation consisted of either dots, disks or pat- derived from the pattern-on-gray stimuli. The
terned disks centered on the same set of image gray background is replaced with a frame of
positions. For the wire stimuli, a new set of 54 static random dot noise. In other words, the
instantiations was made. patterned disk tokens move to and fro in front

Dynamic-on-gray. Three types of stimuli of a screen of static random dots, occluding it
were used to explore the motion of patches of (and occasionally each other) as they pass by. A
dynamic noise moving on a gray background. frame of this stimulus condition is pictured in
These stimuli are microbalanced, as we dis- Fig. 2k, and enlarged in Fig. 21, where we have
cussed in the previous section. These stimuli are artificially highlighted the patterned disks for
derived from the dot, disk, and wire stimuli. To comparison to the pattern kernel shown in Fig.
produce a dynamic-on-gray stimulus from a 2d. There are approx. 300 patterned disks in
white-on-gray stimulus, simply change the lumi- Fig. 2k. As you can see, the camouflage is quite
nance of each white pixel in each stimulus frame effective. When the patterned disks move, as one
(i.e. the foreground or token pixels) to black might expect, they are easily visible (Julesz,
randomly and independently with probability 1971).
0.5. Thus, foreground pixels undergo random Display details. There are a total of 13 con-
contrast polarity alternation while background ditions (3 white-on-gray, I pattern-on-gray, 3
pixels are gray (i.e. have zero contrast). Sample contrast polarity alternation, 3 dynamic-on-
frames are illustrated in Fig. 2g, h and i. gray, 2 dynamic-on-static, and I pattern-on-

Dynamic-on-static. Two types of stimuli were static). There were 54 distinct displays for each
used to explore the motion of patches of of the 13 conditions. In all conditions, the
dynamic noise moving on a static noise back- displays are windowed to an area of 182 x 182
ground. This class of stimuli is also micro- pixels. Displays were computed using the HIPS
balanced (Chubb & Sperling, 1988b). We derive image processing software (Landy, Cohen &
dynamic-on-static stimuli from the disk and Sperling, 1984a, b), and displayed by an Adage
wire stimuli. The foreground pixels consist of RDS-3000 image display system.
dynamic noise, just as in the previous dynamic- Subjects MSL and JBL viewed these stimuli
on-gray case. The background pixels consist of on a Conrac 721 1C19 RGB color monitor. Only
a static frame of patterned texture, where each the green gun was used, and so stimuli appeared
pixel is randomly chosen to be either black or as bright green and black pixels (as dots, disks,
white with a probability of 0.5, just as the lines or noise) on a green background of inter-
dynamic noise is. If a given pixel is a back- mediate luminance. The stimuli subtended
ground position for two successive frames, 3.7 x 4.2 deg. Stimuli were viewed monocularly
then its color does not change. If that position through a dark viewing tunnel, using a circular
is a foreground pixel in either or both frames, aperture which was slightly larger than the
then there is a 50% chance that its color will stimuli.
change. A single frame of dynamic-on-static Subject LJJ viewed the stimuli on a US
stimulus is simply a frame of random dot noise Pixel PXI5 black and white monitor with
(Fig. 2j). The motion-carrying tokens are not a P4-like phosphor. Here, stimuli subtended
discernible from a single frame. Rather, the 2.9 x 2.9 deg, and appeared as white and black
areas of moving dynamic noise define the pixels on an intermediate gray background.
foreground tokens. Stimuli were viewed monocularly through a

Contrast polarity alteration. Three stimulus circular aperture in cardboard which approxi-
conditions involved contrast polarity alterna- mately matched the hue of the displays, and
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" " approx....atey the same lumnance as
ta. simulus background.

Each stimulus cons•s:ed of 30 stimulus 0 o
~a,.... These were presented at a 60 Hz frame o 0,-

rat a. Each frame was repeated four times, result- ,
in i an effective rate of 15 new stimulus frames

per second. Each stimulus lasted 2 sec. A trial
secquerce consisted of a fixation spot, a blank r -
interval, the 30 frame stimulus, and a blank. The
fixation and blank lasted either for I sec each 0

(subjects MSL and JBL), or 0.5 sec each (subject L c 00
UJ). The background luminance remained con- -,

stant throughout the trial sequence. Subjects UJ-
were free to use eye movements to actively . o.

explore the display. Stimuli were viewed from a 0 019,
distance of 1.6 m. After each stimulus display, o V
subjects responded with the name of the shapc 8
and rotation direction using either a compute", J
keyboard or response buttons.

Slightly different image luminances were use..1
for each subject. The background luminance fo
subjects MSL, JBL ard LJJ were 31.0. 400 ant.45.0 cdim- respect 1%'. Since isolated iuminou-. 04" a. ow, do

pixes were used. the appropriate unit of
measurement is extra p.cdcpixel for brigh. At

pixels, and remoredMcd pixel for dark pixels. a, 0 OM
at a specified viewing distance (Sperling. 1971V Oft"

Stimuli were calibrated So that extra pcd~~pixe2 a
and removed pcd'pixel were equal. For subjects "
MSL., JBL and LJJ, these were 13.2. 19.2
and 15.7ticdcpixel. respectively, at a viewing
distance of 1.6m. Contrasts were nominally I
100%. 0

Procedure. There were 13 stimulus conditions. 1._ 0 000 0_

For each condition, there were 54 stimuli (two 41 - Z - Z
instantiations of the flat stimulus u000, and or.e F 3. Results ofesli 1. Results an ivez foe three subjects.
instantiation of each of the 52 other possible Different symbols in the ban represent different tokens
distinct shape/rotation combinatiorns). This re- oarge open dots fee the disk and patterned disk tokeMn
suited in 702 stimuli, each of which was vit-.-, J s.1 al soid dots for tledot tokens. and asteriks for the wir

once by each subject. These 702 trials tokens).

viewed in random order in six blocks of
trials. On a given trial, a stimulus was shown.
subjects keyed in their responses, and then
feedback was provided so that we measured The results for the three subjects are summar-
the best performance of which the subject ized in Fig. 3. Each performance measure given
was capable. Each block lasted approx. I i.:. here. is the percent correct over 54 trials. We
Subjects ran several practice sessions on t.: discuss each class of stimulus condition in turn.
white-on-gray dots condition before data White -on -gray IPattern -on -gray. As ex-
were collected. Given the mix of stimuli an pected, the performance on the three white-on-
a given condition, guessing base rates for gray and the one pattern-on-gray condition was
"the identification of shape and rotation direc- uniformly high. The tokens provided excellent
tion were between 1/53 (for a strategy of motion signals because they were moving rigid
random guessing) and 2/54 (for a strategy areas of high contrast. It did not particularly
of always answering uO001, or one of its matter whether we used dots, as in our previous
equivalents), studies, wires, as in the early wire-frame KDE
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w~~k (W~illahm & (YConnell, 1953), disks, or (24-39% ccýrect identifications), but far less
p-lterncz disks. The disk and patterned disk than his nearly perfect (94-98% correct) per-
sOrr•uli provided very strong percepts of shape, formance with white or pattern tokens on gray.*
alzhough the disks did not undergo realistic The Ist-order motion mechanisms are clearly
fc+.shortening as they rotated. In fact, the dot the most effective input to the KDE system,
stir:.uli gave the weakest percept of depth. These since eliminating motion detectable by Ist-order
tc',cens had the least contrast energy (i.e. were mechanisms reduces performance substantially
tL smallest), and hence were harder to detect. for all subjects. The results for subject MSL
Subject JBL had the greatest difficulty in seeing suggest that 2nd-order motion mechanisms can
thcse small dots, and h.- results show a slight also be used. On some trials, fragments of the
drop in performance for the dot stimuli. microbalanced stimuli did appear 3D to this

Dynamic-on-gray. The motion of a token subject (one of the authors), especially in the
fifled with dynamic random dot noise moving foveally-viewed portion of the stimulus. To raise
on a gray background is microbalanced. In his performance level, he used sophisticated
other words, 1st-order motion detectors are guessing strategies based on active eye move-
"blind" to this stimulus. The expected value of ments and local measurements of motion or
the output of such a detector is zero (ic'ross three-dimensionality in the--fovea at a small
random realizations of the stimulus). Simple number of locations of the display. But, these
2nd-order mechanisms (e.g. using rectification) strategies only serve to bring performance up to
serve to reveal the true motion. mediocre levels in comparison with performance

The results for three subjects are somewhat with rigid white-on-gray motion.
different. For two subjects (LJJ and JBL), Dynamic-on-static. The dynamic-on-static
performance is always at or near chance (less manipulation also results in a micro-balanced
than 10% correct in all cases), although for stimulus. For the dynamic-on-static conditions,
subject LJJ with the dynamic-on-gray dots the performance is at chance level for all three
performance is significantly above chance subjects, and for both wire disk tokens. As with
(P < 0.05). On the other hand, for subject MSL, the dynamic-on-gray conditions, the motion of
performance is always well above chance the tokens is visible. It is not particularly

difficult to detect the motion of an area of
*In order to test the range of luminances over which polarity dynamic noise on a static noise background

alteration was effective, we ran a control experiment (Chubb & Sperling. 1988b). However, this sort
(using MSL and JBL as subjects), where a variety of of motion engenders no shape percept whatever
white pixel luminances were used with a given black pixel
luminance. We viewed a variety of dynamic-on-gray under the conditions of our experiments.
display,. varying the luminance values for the black and Unlike dynamic-on-gray stimuli, dynamic-
white pixels independently over a wide range. We also on-static stimuli are not revealed by contrast
tested a variety of other luminance calibration pro- rectification. Detection of the motion of a re-
cedures. Dynamic-on-gray stimuli are only micro-bal- gion of flicker requires more elaborate 2nd-
anced if the contrast energy of the white pixels is the o f flicker Reqires or elaborateuldf
same as that of the black pixels. And. it is difficult to
calibrate the luminance of individual pixels embedded ia be detected by applying a linear temporal filter
a complex display texture given that the desired pattern (such as differentiation), followed by rectifi-
is first low-pass filtered by the CRT video amplifier, and cation, and then by application of a ist-order
then passes through the gun nonlinearity (see Mulligan motion mechanism. Some such complex 2nd-
& Stone, 1989, for a full discussion of this point). Thus, order m otion detector exists in the human visual

it was important to verify that our results were robtost

over a range of luminance values overlapping the cali- system, since we are capable of seeing areas of
brated equal contrast point, flicker move, inclttding in the displays of our

To summarize, shape identification performance is experiment (at least with scrutiny). Yet, this
consistent with the results of expt I for a reasonably wide 2nd-order motion detection system does not
range of white pixel luminances. Subject MSL consist-
ently performs at moderate levels, and subject JBL support the structure-from-motion computation

consistently performs at or near chance. The luminance for our dynamic-on-static stimuli.
levels yielding poor shape identification performance are Prazdny (1986) reached the opposite con-
consistent with the levels that result in the weakest 3D clusion using dynamic-on-static displays repre-
percept, and are roughly consistent with the lu-nlnance senting simple wire objects rotating in a
levels that are balanced (black pixel decrement vs white senting simpl wire object rotaing ine
pixel increment) for a variety of calibration displays. The tumbling motion. Each object contained five
performance levels for dynamic-on-gray stimuli in expt wires, and subjects were required to identify the
I do not result from a miscalibration of luminance levels, object among six alternative wire-frame objects.
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K disp!ays were 7 x 7 deg, and the wires w,0e Ite! that low spatial resolution in the 2nd-
1,vLral pixels thick. Performance was quite high order motion system (rather than unconnected
:n the task for five subjects. Although we have tokens) is the likely explanation for failure of
';&m reservations about the experimental KDE.
anettiod employed by Prazdny, we have gener- Contrast polarity alternation. Perforraance is

ated similar displays in our laboratory, and our quite poor for the contrast polarity-alternating
dynamic-on-static wire-frame displays do yield dots as it was in the previous paper (Dosher et
a shape percept when displays are restricted to al.. 1989b) For two subjects (JBL and LJJ)
a small number of wires. performance is at chance or insignificantly

The most likely explanation of the difference above chance. For subject MUL, performance is
between our results and those of Prazdny in- low (I1% correct) hut significantly above
volves the difference in spatial resolution re- chance (P < 0.05). On the other hand, when the
quired by each task. Chubb and Sperling token is changed to disks or wires, performance
(1988a) have demonstrated that 2nd-order rises substantially. Contrast polarity alternation
motion systems have less spatial resolution than is not as devastatifig a stimulus manipulation
the 1st-order mechanisms, and that their resol- for disks and wires as it is for dots.
ution drops precipitously with increases in reti- For 1st-order motion detection mechanisms
nal eccentricity. In our displays, motion 'vas such as the Reichardt detector, contrast polarity
about a vertical axis using parallel perspective, alternation causes the strongest responses to be
and hence all motion was along the horizontal, in the wrong direction. Yet, the intended motion
There could be as many as 10 or 20 disks or can be detected quite accurately if a 2nd-order
wires in a given row of the image to resolve. Gur detector is used that first applies a luminance
displays did not yield a global percept of optic nonlinearity followed by a Reichardt detector.
flow, but motion was perceived foveally with The primary difference between the dots on the
scrutiny. This is entirely consistent with Chubb one hand, and the disks and wires on the other,
and Sperling's observation. Prazdny did not is that the disks and wires have more pixels
give precise details about his stimuli, but it was illuminated. In other words, they have more
clear that along a given motion path there vwere contrast energy, and in particular thay have
only two or three wires to resolve across his far more energy at lower spatial frequencies. Thus,
larger display. Performance was so low in our the disk and wire stimuli should stimulate both
dynamic-on-static conditions because too much the Ist- and 2nd-order motion detection systems
spatial acuity was required of the 2nd-order more strongly, resulting in stronger incorrect
system that detects the motion of flickeý.ing direction information from the ist-order

regions. system as a whole, but also stronger information

How useful for perception of shape 13 a from the 2nd-order system, and stronger

dis.,ay of dynamic noise figures moving cn a directional information in those selected 1st-

static noise background? We have examined a order frequency bands which signal the correct

large number of disk and (thick) wire displays direction.
in order to span the gap of spatial resolution It is interesting to note that a large number of

between Prazdny's displays and our own. With the errors made by observers with polarity-alter-

our 3 x 3 deg display size, a shape percept can nating stimuli were errors in the direction of

only be achieved by using a very small number rotation only, with the shape specified correctly.

of tokens (around 5-10). These displays con- For example, for a stimulus which had as

sisted of rotating disk tokens. Cavanagh and correct answers either u + - 01 or u - + Or, the

Ramachandran (1988) suggest an alterr.tive subject incorrectly responded with u + - Or or

explanation of the difference between our results u - + 01,.rather than with any of the 104 other

and those of Prazdny. They consider the criucial possible incorrect responses. This effect was

difference to be that the objects portrayed in the largest for the disk tokens. In a separate control

Prazdny displays were connected-one long wire experiment, for contrast polarity-alternating

figure), whereas our displays consisted of s, par- disk stimuli. 39% of the errors made by subject

ate disk tokens. With our wire displays, a!, iost MSL were only an error in the specification of

no 3D percept was achieved for the dynami:-on- direction, compared to 1.4% direction errors

static condition. In addition, we were abe to for the dynamic-on-gray conditions. For subject

achieve a 3D percept with displays of a mall JBL, the corresponding values were 48% and

number of dynamic-on-static disks. Thu. we 5.6%. For the polarity-alternating disks, on
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t•L v4:: •bec MSL correctly itdertified the three-di-.ensioriality Thus, poor performance
,hape, there was a 33% chance that he would in the task resulted from undersampling in time
rr:isidetify th! direction of rotation (for JBL: of the stimuli, which interferes with lst-order
293%). We helieve that accurate shape identifi- land some 2nd-order) motion mechanisms, and
cation in this condition primarily reflects re. good KDE can result from the motion of tokens
sponrses co3mtructed from selected 1st-order which are camouflaged when at rest
trifornationa. One strategy was simply to specify We have also examined dynamic-on-static
th.: opposite rotation direction to that which displays with finer temporal sampling (60 new
was perceived! The displays did. however, oc- frames per sec). These displays yield no im-
casionally appear to be 3D with the correct pression of three-dimensionality. The poor re-
direction rf motion (at certain times d-u-ing the suits for dynamic-on-static. displays do not
totation, or close to the location to which the result from insufficient sampling in time. Also,
eyes were directed), indicating a residual 2nd- since finely sampled pattern-on-static displays
order motion input to the KDE system. The fact deappear 3D. poor performance with dynamic-
that these displays only appeared foveally to be orn-static-displays does not result from the
rotating in the correct direction, and then only zamouflage of the tokens when at rest. Rather,
usng the larger tokens, is consistent with a dynamic-on-static displays yield no effective
2rd-order motion detection system with lo-.; KDE because of the low resolution of the
contrast -ensitivity arnd low spatial resolution 2nd-order system required to analyze the
(as has, been demonstrated by Chubb & motion
Sperling, 1988b), and more sensitive in the fovea
(Chubb & Sperling, 1988a). In summary. we ExPtM•,t t - KDE
have some indication that 2nd-order motion
detection mechanisms can be used to derive 3D The first expenment shows that accurate ptr-
structure. but they are far less robust and have formance in shape identification is dependrnt
poorer spatial resolution than 1st-order motion upon a global (primarily Ist-order) optic flow. If
mechanisms. a stimulus manipulation makes that optic flow

Pattern -on -stwtt-. For all three subjects per- noisy or otherwise interferes with the optic flow
formance with pattern-on-static displays is quite computation, there is little or no KDE. This
poor (9, 26 and 33% corrrect), although it is occurs even though foveal scrutiny does reveal
significantly above chance levels in all cases the motion in these displays.
(P < 0.05). This poor performance results from If the percept of surface shape depends upon
a mismatch of resolution and temporal a global optic flow, then we should be able to
sampling. The patterned disks are quite de- get reasonable shape identification performance
tailed/high frequency. The disks are 6 pixels in from any stimulus that results in a strong per-
diameter, and can move as far as 8.3 pixels in cept of optic flow. In particuiar, the extended
one frame. This speed is only achieved by disks (2 sec) viewing conditions of expt I should not
at the top of a peak when in the middle of the be necessary. Two frames are obviously the
display (i.e. near frame numbers 0. 15 and 29). minimum nimber of frame- that can yield a
but many disks are moving 3-5 pixels per frame percept of motion, and two frames should
High frequency spatial filters which are required suffice. In the second experiment, we investigate
to identify the disks must correlate across the accuracy of performance in the shape
frames with filters that are far more than 90 deg identification task for two-frame displays.
away in the phase of their peak spatial fre-e
quency. A typical Ist-order detector will not Method
compare spatial regions that far apiaf in order Subjects. There. were, two subjects in this
to avoid .spatio-temporal aliasing (van Santen & experiment. One was an author, and the other
Sperling, 1984). Thus, the clearest motion sig- was a graduate student naive to the purposes of
nals are coming from the slower areas in the this experiment. Both had normal or corrected-
display, whicih are the least useful for discrimi- to-normal vision. There were slight differcnccs
nating the shapes. We have examined pattern- in the conditions for each of the two subjects.
on-static displays with finer temporal sampling These will be pointed out below.
(60 new frames per sec, as opposed to 4 repaints Stimuli and apparatus. The stimuli were sim-
of 15 new frames per sec used in the exper- lar to the white-on-gray dot stimuli from expt 1.
iment), and they give a strong impression of Stimuli were generated from the same set of 3D



872 MlcxA, S. LauNv et &L

shapes, using the same dot densities, and pro- 182 x 182 pixels, and were presented using the
jected in the same way. The local dot density same apparatus and viewing conditions as for
was kept constant using the same scintillation subject UJ in expt I. The background lumi-
procedure. New stimuli were computed, two of nances for subjects MSL and UJ were
the fiat shape, and one of each of the other 52 15.6 cd/m 2 and 5.0 cd/rl. respectively. The cor-
shapes, resulting in 54 displays. responding dot luminosities were 26.8 and

Each display consisted of I I frames, rotating 15.7 extra p cd/dot, resively. Nominal con-
from 20 deg left to 20 deg right in increments of trasts were huge (i.e. nominal Weber contrasts
4 deg per frame. The middle frame (number 6) of 500% or more).
was face-forward, as was the first frame of each Procedure. The task was shape and rotation
display in expt i. Two-frame stimuli consisted identification. Subjects keyed their responses
of a presentation of the middle frame followed using response buttons, and received feedback
by one of the other 0 display franes. This on the display after their response. Three groups
resulted in either a leftward or rightward ro- of trials were run. In the first, the ISI w..s
tation of 4-20 deg between the two frames of the 16.7 msec, and rotation angle between frames
display. A single trial display consisted of 0.5 sec was varied from 4 to 20 deg. Since the second
of a cue spot, 0.5 sec blank, the first frame, an frame could be chosen from either the frames
inter-stimulus blank interval (or ISI), the second preceding or succeeding the middle frame
frame, and a blank. Each stimulus frame was (rotation to the left or right), this resulted in 540
repainted four times at 60 Hz, for a total dur- pomsble stimuli (54 displays, 2 directiomn 5
ation of 67 msec. We define the ISI to be the rotation anges). These were run in random
time interval between the onset of the last order in 4 bkoK of 135 tials. In the second
painting of the first stimulus frame and the onset group of trialk rotation was kept constant at
of the first painting of the second stimulus 4deg. ISM ranged from 16.7 to 83.3 msec. This
frame. For example, when no blank frames were again resulted in 540 trials presented in random
used. the ISI was 16.7 msec. Displays were order in 4 blocks of 135 trials. In the third group
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ISI wu 16.7 mws.. (B) Shape-and-rotatiom identifiction 30=4y aUs ruain of the dudmaon ofa blank
inter-stimulus interval (IS!). Rotatoio an&le we 4de. (C) TMe two m11ipu0atio1 9d in the me

aperrimmLt Not the lack or inmtrwdo.



da taL, both rotation angle and ISI =e presunabsy would be seen in those of MSL if he
va;ied. The ISIs were either 16.7 or 33.3 •.-•c had been tested using smaller rotations.
For subject MSL, the rotation angles -:re In a previous paper (Dosher el al., 1989b), we
either 4 or 12 deg. For UJ, they were el.... 8 found that adding a blank interval between
or 12 deg. These four conditions (two row .. n successive frames of a 30 frame KDE stimulus
angles by twco ISIs) resulted in 432 trials %.. +uh reduced shape identification to near chance
w-re presented in random order in 4 blcu -f performance. This was explained by reduction
108 trials- of power in the stimulus to the Ist-order system.

This effect is also seen here, where performance
decreases monotonically with increasing ISI

Results (Fig. 4B). Subject UJ performs at chance levels
The results are shown in Fig. 4- Eaci, _%a witha50msecor greaterISI.whilesubjectMSL

point i5 the percent correct over 108 trials. is is still slightly above chance performance with
evident from the figure, shape identificati-..n,. an 83.3 msec ISI
be quite high for these minimal motion das .s Time anddisiance. In the previous two groups
(for similar observations using different c:, cf trials, there was a confounding between the
imental methodology, see Braunstein, Hoff--i, snmulus manipulation (rotation angle or ISI)
Shapiro, Andersen & Bennett, 1987; Lap -ý.. and dot velocity. Greater rotation angles at a
Doner & Kottas, 1980; Mather, 1989; and Pe- fixed (16.7 msec) ISI produced greater velocities.
sik, 1980). For an ISI of 16.7 msec (Fig 4 Similarly. greater ISIs at a fixed 4deg rotation
this entire sequence lasted only 133 msec '. ýi, angle resulted in smaller velocities. If perform
performance was as high as 54.6% for sub :=t ance %tre simply a function of velocity, then
LJJ, and 88.9% for subject MSL (62.8% 1:"'d rotation angle and ISt should trade off. In Fig.
94.2% of their white-on-gray do's performa:..i 4C we present the results of varying both IS!
in expt I, respectively). Two frames of ma. : and rotation angle factorially. We used a differ-
dots are sufficient for accurate, although , ent set of rotations for subject LJi than MSL
perfect based on the results in Fig. 4A, so that for both
performance in this shape identification .. ,. subjects the performance was expected to de-
Since these experiments were first .repc: .tJ crease with increasing rotation angles. As can be
(Landy, Sperling. Dosher & Perkins, I . seen in the figure, the two variables do not trade
Landy, Sperling. Perkins & Dosher, 19S. j, cff as would be expected if performance were
Todd (1988) has also shown above-chance K i ronly a function of velocity, or rotation speed.
performance for two-frame stimuli, althougi'. .h Increasing rotation angle increases the difficulty
his paradigm the two frames are repeated se ,- of the correspondence problem. Increasing ISI
eral times before a response is made. causes increasing problems for the motion de-

Rotation angle and fixation. Performance a. a tection system. Both manipulations degrade
function of rotation angle between the t o performance in an additive fashion. This obser-
frames is given in F.g. 4A. Performance :Le- vation contradicts Korte's (1915) 3rd law of
creases with increasing angle of rotation for apparent motion perception, which states that
subject MSL. For s.bject L13, perfo-=a• e im increase in ISI must be counteracted by an
reaches a peak at 8 deg, and decreases for increase in distance traveled for strong apparent
smaller and larger rotations. The decrease in motion. In Fig. 4C, Korte's law predits a
performance with larger rotation angles is tc be cross-over interaction, which is strongly dis-
expected, since the correspondence problem be- confirmed. However, Burt and Sperling (1981)
coraes increasingly difficult as dots move farther show that time and distance have independent
from their initial positions. One might aso additive effects on the strength of the apparent
expect performance to drop as rotation angle motion of dot stimali, which agrees with the
decreases to zero. At extremely small rotaziaon present results.
angles, the remaining motion would fall be'zw KDE from optic flow. Accurate KDE per-
threshold. In our displays, the drop with sn.all formance requires a global optic flow. When
rotation angles knight be expected to occur e*',en that optic flow is produced by a minimal motion
sooner as the small motions in the disp!a2' stimulus-a two-frame display-the shape Per-
became corrupted by poor spatial sampl"rg cept may be fragile and easily degraded by a
(inter-pixel distance was approx. i min a::m . variety of stimulus manipulations. The stimuli
This drop was only seen in the data of UJ, and are qufte brief in this paradigm and, by subject

t I~4
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r•ort!, appear as a Collection of dots moving Structume-from-motion computation may
-.t vari.ous speeds, i.e. "look like" an optic improve its 3D representation with additional
t~w. On some trials, only patches of planar information (e.v with additional frames,

::tion are perceived, and the shape response Grzywacz, l-li'dr. Inada & Adelson, 1988;
vi •enerated cognitively. On other trials, a Hildreth a. •irzy. :. 1986; Landy, 1987;
"-D surface is perceived. On some trials the Ullman, 1984). The - in our two-frame
ptic flow is perceived and so is the shape, displays does not , appear to have the

but the shape percept is only "felt" after the depth extent *.ay' ..i from the 30 frame
display is over. As we discussed extensively in displays of expi 1, and two-frame performance
our first article on the shape identification is reduced relative to 30-frame performance.
task (Sperling et al., 1989), KDE is inextricably The shape identification task can be solved by
tied with the percept of an optic flow. It can knowing only the sign of depth and direction of
be very difficult to differentiate empirically motion in each spatial location (up to a reflec-
bet:ween a judgment based on a 3D percept tion). without accurately estimating either vel-
and performance based on an alternative strat- i:ity or the amount of depth.
egy (computationally equivalent to that re-
quired for KDE) using a remembered set of 2D OISCUSSION
velocities.

Reasonably accurate performance on the Two experiments investigated the type of
shape-and-rotation identification task results -Acotion detection mechanism used as an input to
from only two frames of 300 points. In the the structure-from-motion system. Performance
computer vision literature, there have been sev- ., the shape-and-rotation identification task
eral studies of the structure-from-motion prob- vas accurate regardless of the token used to
lem resulting in theorems of the following form: carry the motion, as long as that token was
"1m views of n points under the following.estric- presented with constant contrast polarity (the
tions of the motion path suffice to determine the -;hite-on-gray and pattemson-grayconditions).
3D structure up to a reflection" (Bennett & '7he performance decrements seen with contrast
Hoffman, 1985; Hoffman & Bennett. 1985; p-olarity alternation and the two microbalanced
Hoffman & Flinchbaugh, 1982; Ullman. 1979). :onditions add further evidence to the con-
It has been suggested that these minimal con- clusion of Dosher et al. (1989b) that Ist-ordet
ditions for structure from motion also govern mnotion detectors are the primary substrate for
human perception (Braunstein et al., 1987; zhe computation or shape. In addition, there are
Petersik, 1987). The particular models just men- :ndications of an input to the shape compu-
tioned do not have any prediction concerning Lation from 2nd-order motion mechanisms,
performance in the 300 pointsi2 views situation which is weak, low in spatial resolution, and
used here. An exception is a recent paper by concentrated at the fovea. 2nd-order mechan-
Bennett, Hoffman, Nicola and Prakash (1089), isms that require temporal filtering (i.e. detec-
where it is shown that there is a one parameter tion of flicker) prior to a point nonlinearity were
family of possible interpretations for two frames uselefs here because of the spatial resolution
of four or more points. This family is parame- required by our stimuli. These sorts of detectors
terized by the slant of the axis of rotation (as in would only be useul for KDE displays mnvolv-
the "isokinescopic displays" described by Adrel-, ing a small number of moving features, rather
son, 1985), and the paper does not deal explic- than the densely sampled optic flows required
itly with rotation axes in the image plane, as for the determination of precise shapes of
used here. On the other hand, models that curved surfaces from motion cues. The results
compute 3D structure based only upon a single from the two-frame experiments reinforced
velocity field do allow for this performance these conclusions They also demonstrated that
(Longuet-Higgins & Prazdny, 1980; Koenderink detection of instantaneous velocity is sufficient
& van Doom, 1986). We take our experimental for KDE; acceleration is not required, nor are
results as evidence for optic flow-based methods more than two views.
for the KDE, as opposed to models requiring
three or more views. In particular, our results A one,,emmu--Tb work dagmntud if ths piper oNasupported Iprinmary bya paInt from the 0fic of Naval
strongly rule out models that require measure- s t No014s-K-.7T and partly by USAFment of acceleration in addition to velocity (e.g. Lire Scieum DirPermrate. gants 35.0364. U5-0140, and NSF
Hoffman. 1982). gamt IST-841367. We would like to thank Charles Chubb
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